VS VP

VS25203

Hardware Reference Manual

Revision 1.03

VLS]

Solution

Y



0 2000 VLSI Solution Oy, Hermiankatu 6—8 C, FIN-33720 Tampere, Finland

Information furnished by VLSI Solution Oy is believed to be accurate and reliable.
However, no responsibility is assumed by VLSI Solution Oy for its use.

Specifications are subject to change without notice.

All rights reserved. No part of this manual may be reproduced, in any form or by any
means, without permission in writing from the copyright owner.

The descriptions contained herein do not imply the granting of license to make, use, or
sell equipment constructed in accordance therewith.

All trademarks mentioned in this document are trademarks of their respective owners.

Windows 95, Windows NT, DirectDraw, Direct3D are trademarks of Microsoft
Corporation.

AutoCAD, 3D Studio are trademarks of Autodesk, Inc.

Unix is a trademark of Unix System Laboratories, Inc.

Photoshop is a trademark of Adobe Systems, Inc.

Quake is a trademark of id Software, Inc.

rev. 1.03

08.03.00



I. Revision History

From Revision 1.02 to Revision 1.03.

1. Trademark page updated.

rev. 1.03 08.03.00



II. Table of Contents

1. INTRODUCTION 6
2. ARCHITECTURE 7
2.1 OVERVIEW..cciiiiieieeeicititieee e sesrnrreee e s ennnnees 7
2.2  KEY FEATURES.....ccoiiiitireiee et eevnneeens 8
2.3  GEOMETRY PROCESSOR.....cc.cccovvitmrirereeeienns 10
2.4  PRIMITIVE PROCESSOR .....ccoveiiiiiiiriiiieeeienne 10
2.5  PIXEL PROCESSOR ......ccovuviieieeiiiiinrieeieeesennns 10
2.6 PCl INTERFACE ...coocooiititiieeee et 11
2.7 MEMORY MANAGEMENT UNIT ..cccovvvvreeerenne 11
2.8 SVGA AND VIDEO REFRESH.....cccccvvereeeienne 12
2.9  VIDEO CAPTURE UNIT .ccvviiiiiiiiiiiiiiieeee e 12
2.10 BLOCK TRANSFER UNIT .uvveeieeiiiiiirieeeeeeeenns 12
2.11 INTERNAL CLOCKS.....ccovtreeieeeieiirirreeeee e e 12
2.12 INTERNAL VIDEODAC ...ovvevieeiiiicirieeeeeeeenne 12
2.13 EXTERNAL VIDEODAC ....ooovviiiiiiiriieeeeeeene 12
2.14 EXTERNAL BIOS ROM INTERFACE ............ 12
2.15 REGISTERMAP...cooviiiitieieee i 13
2.16 SUMMARY OF REGISTERS.......coovvvvriiieeerenns 14
3. INTERFACES 16
3.1  ACCESSING INTERNAL REGISTERS............... 16
3.2 MEMORY APERTURES......ccevieeiiiiiririieieeeeeenns 16
3.2.1 Linear Mode ...............cooooeeeciieeeeaee. 17
3.2.2 Raw Mode................oooooeeiii 17
33 PClIBUS...coceee et 18
3.3.1 OVEIVICW. ... 18
3.3.2 Bus Master Functions and Commands.... 19
3.3.3  Bus Master Programming Guidelines ..... 24
3.3.4  PCI Configuration Space Registers......... 24
3.3.5  INterrupts........ccoooeiiieiiiiiieee e 35
3.4  SYSTEM CONTROL REGISTERS.......ccevveeernne 36
3.4.1 OVEIVICW. ... 36
3.4.2  ReEGISIEFS .cueoevieeieiieeeeeeee e 36
3.5 GRAPHICSMEMORY TYPE......ooovvviiireeeeenne 44
4. GEOMETRY PROCESSOR.......ccccceeeeruuee 46
4.1  GENERAL INFORMATION....ccvvveieeereinnrreeeennn 46
4.1.1  Geometry Processor Bus Structure.......... 47
4.2 DATAPATH ARCHITECTURE ...ccoeeeeiiinirrreeenen. 47
4.2.1 Arithmetic URit.............oeeeeeeeeeeeeeeeenennnnn. 48
4.2.2  Logic URit........ccccccovvievoiiniianiiniencen 51
4.2.3 Normalization Unit.............ccccccvvvveen... 52
4.2.4 Hardware Division Unit.......................... 52
4.2.5  Data Memory...........ccccccevvieeeeiiiiiannan. 53
4.3  INSTRUCTION EXECUTION ....ecvveeeiivinrvninnen. 54
4.4  ADDRESSING MODES......cccccevvviiieieieieieieienes 56
45  GEOMETRY PROCESSOR REGISTERS............ 58

4.5.1 General ...........ccoocevoeevciaiiiiiiieeee 58
4.5.2  Arithmetic registers..............ccccueuenur.n.. 59
4.5.3  Stream registers .............cccocuveneeennnn. 61
4.5.4  Index regiSters...........cccccooeiioiiieniannnnn. 61
4.5.5  Control RegiSters ...........cccccceuvenevenncnnn. 62
4.5.6  Status register ..........coccccvvieiiiiiiiieneien. 63
4.6  INSTRUCTION ENCODING........cooeriruririiinne 64
4.6.1  Arithmetic inStructions........................... 65
4.6.2  Parallel Move instructions...................... 72
4.6.3  Logic inStructions..............cccccevevveveeennan. 80
4.6.4  General Move instructions...................... 82
4.6.5  Branch insStructions..................cccccooo.... 86
4.6.6  Miscellaneous instructions...................... 89
4.7  GEOMETRY PROCESSOR EXTERNAL
INTERFACE .....coiiiiiiciree s 96

4.7.1  General information..................cc.c........ 96
4.7.2  Geometry Processor Interface PCI

Register DeScription ...............ccccceeeueen. 96
4.7.3  Geometry Processor instruction code

ILEITACE ..., 99
4.7.4  Geometry Processor Stream I/O

IREEITACE ... 100
5.  PRIMITIVE PROCESSOR.............c..c.... 102
51  OVERVIEW ...ooiiiiiiicie s 102
5.2  PRIMITIVE PROCESSOR REGISTERS............ 105
5.2.1  RedlInterpolator..............ccccccevevanni.. 106
5.2.2  Green Interpolator...............cc..c........ 107
5.2.3  Blue Interpolator..............ccccccocvnni... 108
5.2.4  Transparency Interpolator.................... 109
5.2.5 A Texture U Interpolator (ATU)............ 110
5.2.6 A Texture V Interpolator (ATV) ............ 111
5.2.7 B Texture U Interpolator (BTU)............ 112
5.2.8 B Texture V Interpolator (BTV) ............ 113
5.2.9  ZScale Factor..............cccccoceveecvacnn. 114
5.2.10 ZlInterpolator.................cccccoovvevuvannn.. 115
5.2.11 Edge Ordering ............cccccocvvevennannn. 116
5.2.12  Edge0 Interpolator............................. 117
5.2.13 Edgel Interpolator.................c.......... 118
5.2.14 Edge2 Interpolator.................c........... 119
5.2.15 Grid Register............c.cccccevveveeennanncnn. 120
5.2.16 P Interpolator.................cc.cccoevevvanni.. 122
5.2.17  Start/End Coordinates.......................... 123
5.2.18 raster ext RegiSter...........cccoccevevennn. 124
6. PIXEL PROCESSOR 125
6.1  OVERVIEW ...ooiiiiiierci s 125
6.2  FUNCTIONAL BLOCK DIAGRAM ................ 126
6.2.1  Bus Address Table................cccccc...... 127
6.2.2  FIFO .o, 128

rev. 1.03



6.2.3  Coefficient Registers ............................. 128 12. BLOCK TRANSFER UNIT .......ccceeereuuee. 222
6.2.4  Temporary RegiSters...........ccccceeuenn... 128
6.3  SHADING PROGRAM FORMAT ... 129 ig% S\S/E(F;\E/IEW ................................................. ggg
6.4  SHADING INSTRUCTIONS. .....ceeierveeeeirieeenns 131 12'3 BLOCK TRANSFER UNIT REGISTERS """""" 299
6.5  PIXEL PROCESSOR REGISTERS.........ccvveenne 141 T T e e e
6.6  PIXEL PROCESSOR UNIT MEMORY 13. INTERNAL / EXTERNAL DAC............. 226
BLOCKS.....oiiiiiiee et 150
6.7 VS _VPBUMPMAPPING PROGRAMMING 14. APPLICATION NOTES.....ccoceeerrreeerrvenee 227
GUIDELINES.....cccttteeeeteeeeeiteeeeetreeeeeteee e 150
14.1 PCl BUSRERFERENCE DESIGN................... 227
7. CLOCK SYNTHESIS AND 14.1.1  Introduction ................cc....ccocvvveenneen... 227
CONTROL 152 14.1.2  Power-Up Configuration Summary....... 227
71 OVERVIEW oo 152 1413 Content Of EPROM........ccocoovvvvnnns. 227
7.2 PROGRAMMING ....ovvreecereeseesseseesseeseesnens 152 14.1.4  PCIBus IRterface .........cccooonnn.. 228
14.1.5 Memory Interface..............c..cc.ccooven.... 228
8. VGA CORE 154 14.1.6  Monitor Interface................cccccoevenni... 229
8.1  INTRODUCTION....eeerrierremrerreesreenreerennenneas 154 jj 5; g’wj:f iizibyﬁon and Conditioning ;ég
82  VGA MEMORY AND REGISTER MAPPING . 155 v ock Synthesizer...............ccccocevceeini.
8.2.1 Introduction.................ccccc.coceeeeeeecnn. 155 15. PINOUTS AND SIGNAL
8.2.2 VGA Register mapping.......................... 155 DESCRIPTIONS 231
8.2.3 VGA Memory Mapping......................... 157
83 VGA SUBSYSTEM CONFIGURATION.......... 158 12% gINOUT ...................................................... ggg
8.4  VGA CLOCK CONFIGURATION......ccceevveenns 159 ) GNAL DESCR'PT',ONS """"""""""""""""
. 15.2.1 External DAC Signals...............c...c........ 233
8.4.1 Introduction.................cc.....ccocvveeeieinn. 159 .
15.2.2  PLL Signals...........ccccoovveeiaciiaianiannnn, 234
8.4.2  Host Interface............c.cccccovcvevvennannn.. 159 . :
. 15.2.3  Internal Video DAC Signals .................. 234
8.4.3 Video Interface............cccccccovvvvvvennnnnn.. 159 1524 Miscell Sional 334
85  VGA INTERRUPT GENERATION................. 160 < ISCCLLANCOUS DIGNALS. . +v- v
15.2.5  A-Memory Signals ...............cc.ccoovenn... 235
8.6 VGA REGISTERS......cccueeeeieeeeiieeeesiaeeennns 160 A
) 15.2.6 B-Memory Signals ..........c..cccccoocvnnn.. 236
8.6.1  General Registers...........c.ccccevevvennn.. 160 )
. 15.2.7 PCI-Bus Signals..............cccccoevevnnenn.. 238
8.6.2  Sequencer Registers ..............ccccccco..... 165 1528  Supphv Sienal 240
8.6.3  CRTC ReGiSIErS.........oveoeeeeeeeeeeeereee.. 170 €O SUPPLY SIGNALS.covvcvvesesses s
8.6.4  Graphics Registers............ccccccceveene.. 193 16. ELECTRICAL SPECIFICATIONS........ 242
8.6.5  Attribute Controller Registers............... 200 161 E Q
8.6.6  Color Palette Registers ........................ 205 : LECTRICAL CHARACTERISTICS AND
OPERATING CONDITIONS ...ccovveeeenreeeeneeen 242
9. VIDEO CONTROL 208 16.1.1 Absolute Maximum Conditions.............. 242
9.1 OVERVIEW .o 208 16.1.2 DC Operating CORGIIONS..........cccoocn. 242
16.1.3  General Specifications.......................... 242
9.2 REFRESH TIMING.....cccouieeeieeeecieee e 208 1614 Kl cal Spoci . 243
9.3 640 x 480 CALCULATION EXAMPLE........... 209 . ectrical Specifications ........................
94  VIDEO INTERFACE REGISTERS 211 16.2 TIMING PARAMETERS.....cccecovieeeeereee e 243
T T 16.2.1 PCIl Interface .........c..ccccoovvvvvencinncnnnnnnn. 243
10. TV OUTPUT UNIT 217 16.2.2  Video Capture............ccccevveeeecnannne. 244
10.1  OVERVIEW wovieiieeciveeciteectreesreesreesreesnnee s 217 jg ;j %ZZOO?’; tlenrtfe;{Z €O Z;
10.2  USAGE...ii ittt 217 U T
10.3 TV OUTPUT UNIT REGISTER ....cceevuvereennnee. 217 17. FURTHER READINGS .......cccccverecrueeeene 246
11. VIDEO CAPTURE UNIT.......ccccovuveeerunnees 219 18. INDEX 247
111 OVERVIEW .ooiiieiee et cceee et et 219
112 USAGE. .ottt 219
11.3 VIDEO CAPTURE UNIT INPUTS......cceecuneee. 219
11.4 VIDEO CAPTURE UNIT REGISTERS............. 220
rev. 1.03 08.03.00



1. Introduction

This document gives an overview description of the architecture of VLSI Selution’s VS_VP
VS25203 3D graphics accelerator. The document contains 18 chapters.

Chapter 1 is introduction of this document.

Chapter 2 gives some general information about the architecture of VS25203.
Chapter 3 describes the interfacing registers, graphics memory and the PCI bus.
Chapter 4 presents the Geometry Processor.

Chapter 5 describes the Primitive Processor

Chapter 6 describes the Pixel Processor.

Chapter 7 gives some information on how to program the core and video clocks of
VS25203.

Chapter 8 describes the VGA -block.

Chapter 9 describes how to calculate screen parameters for video registers, using a screen
size of 640x 480 pixels as an example.

Chapter 10 gives information about TV-output and its usage.

Chapter 11 provides information about Video Capture unit.

Chapter 12 describes the block transfer unit and its operation.

Chapter 13 lists the main features of the DAC.

Chapter 14 provides some board level application information.

Chapter 15 describes the pin layout and defines the pin signals for 3.3 V system.
Chapter 16 describes the electrical characteristics of the device for 3.3 V system.
Chapter 17 lists a few references for further readings.

Chapter 18 presents the index list.

rev. 1.03 08.03.00



2. Architecture

2.1 Overview

VS25203 is a member of VLSI Solution’s VS_VP family of highly integrated,

programmable, and high performance 3D graphics accelerators. It is designed for the
acceleration of games, 3D applications and user interfaces. It offers full compatibility with
the emerging 3D standards including Direct3dr Windows 95. And OpenGL for

Windows NT".

VS25203 integrates on a single chip the Primitive Processor, Pixel Processor, Geometry
Processor, PCI bus master interface, memory management unit, video refresh logic, VGA,
Block Transfer Unit, clock synthesizer and true-color DAC.

The features of VS25203 form a solid base, on which support for different 3D APIs can
be built easily. A full 3D graphics system requires only memory, in addition to VS25203.
A low cost system can be constructed with two 25632 SGRAMS.

VS25203 is a single chip implementation of the 3D rendering pipeline. The primitives are
first rasterized in the Primitive Processor. The resulting individual pixels are sent to the
Pixel Processor, which writes these on the screen through the memory management unit.
The chip also contains a PCI interface for communicating with the host processor.

PCI Bus BIOS ROM I

Y Y
| PCl Interface |
! Y vy
Primitive Clock
Processor SVGA Synthesizer
Block Geometry ¢ Core Video <— Video In
Transfer Processor Capture
Unit —>»  Pixel < Video DAC > CRT/TV
Processor Interface TV Out
Y i i
| Memory Manager
SGRAM / SDRAM / EDORAM
rev. 1.03 08.03.00



2.2 Key Features

Rendering

Programmable pixel pipeline

User specifiable blending

Perspective correct true-color Gouraud lighting
Perspective correct transparency

Perspective correct fog

Perspective correct texture mapping

Multiple simultaneous textures

Environment mapping

Bump mapping

Stencil operations

Logic operations

Specular highlights

Properly handled lighted textures

Rasterized screen door transparency
Destination blending for transparency effects
Fog and depth cue with vertex level control

Textures

Texture magnification filtering with point sampling or bilinear filtering

Texture minification filtering with point sampling or MIP mapping

Trilinear filtering possible

Texture sizes from 16x16 pixelsto 2048x2048 pixels (non-square supported)

Amount of texture maps limited only by available memory

Texture can be looped or have a solid color border

RGB map formats: 32-bit RGBA (32-bit frame buffer) and 16-bit RGB and 16-bit RGBA
YUV map formats: 8-bit alpha + 24-bit VYU (YUV 4:4:4); 32-bit YVYU (YUV 4:2:2)
Indexed map formats. 8-bit and 4-bit

Indexed maps have an internal 256 color 24-bit palette (RGBA 6:6:6:6)

Full blending and filtering possible with indexed maps

Real time texture paging and animation

Rendering directly to texture maps possible

Memory

2-32 Mbytes of SDRAM, SGRAM or EDO DRAM supported
Memory bus width 64 bits or 32 bits

Memory bandwidth up to 800 M Bytes/sec with 64-bit bus
Unified memory architecture for frame buffer and textures

Framebuffer

Virtual resolutions up to 2048 x 2048 pixels

24-bit or 16-hit color (dithering supported)

24-bit or 16-bit depth buffer

1-bit stencil mask

Support for double and triple buffering and stereo imaging

rev. 1.03

08.03.00



SVGA and Video Refresh
100% IBM compatible VGA unit
Support al the existing modes

Display resolutions from 320 x 200 to 1600 x 1200 pixels
Internal video refresh logic

Internal programmable clock generator (up to 200MHz)
Internal true-color DAC (up to 200MHz pixel clock)
TV-output with configurable flicker filter

Geometry Processor

3-issue VLIW architecture

32-bit fixed point vector datapath

Block floating point support

Hardware division unit

Integrated 3 x 128 words 2-port SRAM data memory

4-way set associative instruction cache of 4 x 128 word blocks

Video Capture Unit
8-bit 4:2:2 YUV ITU-R BT.656-3

Block Transfer Unit
Memory copy and fill operations
Supports basic bit copy operations

Physical Characteristics
304-pin BGA packaging
200 MHz operation

I/O interface at 5/3.3V

Compatibility

Drivers for Microsoft Windows 95

Drivers for Microsoft Windows NT 4.0

Driversfor DirectDraw and Direct3D (immediate mode)
Drivers for OpenGL for Windows NT

Estimated Peak Performance (with 300MHz Pentium I1)

1,000,000 shaded, 16bpp textured 25 pixel triangles per second

1,000,000 shaded, 16bpp textured, Z-buffered 25 pixel triangles per second
Bilinear pixel fill rate of 60,000,000 pixels per second

rev. 1.03

08.03.00



10

2.3 Geometry Processor

The Geometry Processor can be used to accelerate any calculations related to the data
stored in the external graphics memory. Normally the task of the Geometry Processor isto
process a data stream and cal culate val ues to the Primitive Processor registers.

The Geometry Processor is based on 3-issue VLIW architecture with a packed 32-bit
instruction word. It has three Arithmetic Units and additional units for hardware division,
logic operations and other tasks. The arithmetic units have three cycle pipelines. As usua
for a VLIW processor, the architecture and pipeline in the Geometry Processor are visible
to the programmer, and one must take into account all the pipeline effects. This enables
one to write maximally efficient code, but requires more care in programming.

The processor aso has three integrated data memories, so that there is no need to use the
external graphics memory during the calculations. The program that controls the
Geometry Processor is given by the user and is stored in the external graphics memory.
The program is cached into an on-chip instruction cache.

2.4 Primitive Processor

The Primitive Processor calculates the individual pixels which form each primitive and
forwards them to the Pixel Processor. Primitives can be triangles, lines or 2D regions.
They are described with their edges and shading information. All these are stored to the
Primitive Processor registers by the host processor.

The Primitive Processor determines all pixels that are inside the primitive and calculates
the different properties for them. The pixels have 8 properties which are all interpolated in
parallel. They can be used as color (R,G,B), transparency, fog intensity, specular intensity,
primary texture coordinates (U,V) and secondary texture coordinates (U2,V 2).

What redlly affects the resulting image quality is the accuracy with which this process is
carried out. Perspective correction is heeded for realistic results and there are no sacrifices
in this area. All properties including color, transparency, and fog - not just the texture as
in most other 3D systems - are interpolated with full perspective correction without
performance restrictions. This guarantees that lighting and texture will fit together
seamlesdly.

2.5 Pixel Processor

The Pixel Processor performs visibility checking (using the Z buffer), texture data
fetching and transparency and color blending. It receives as input a list of pixels aong
with their properties from the Primitive Processor and writes the resulting colors as an
output to the local framebuffer memory.

All calculations in the pixel pipeline are performed with true-color accuracy (24-bit color,
8-bit transparency). The processor can be used for overlay surface color, which can be
combined from multiple textures, diffuse light intensity and specular light intensity. The
lights can also be independently colored without a performance loss. In addition, special
effects including fog, environment mapping and bump mapping are supported in
hardware.

rev. 1.03

08.03.00



11

In order to maximize image quality without maximizing memory usage, a wide variety of
texturing methods are supported. The textures can range from 16 x 16 pixels with 4 bit
indexed color, right up to 2048 x 2048 pixels, and can be of full 32 bit true-color quality.
For indexed textures, the Pixel Processor has an internal 256 color RGBA palette.

The quality can be further increased with texture filtering, as both MIP-mapping and
bilinear filtering are directly supported (also in indexed modes). Because of
programmability, trilinear filtering is also possible.

There are many different ways in how the pixel properties can be used to derive the final
pixel color. So as not to impose any sdtrict limits, the Pixel Processor is fully
programmable. The sequence of texture, blending and control operations can be specified.
In eddition, the pipeline works in parallel with multiple pixels; this guarantees
performance even for more complex shading settings.

The resulting pixel color can also be combined with the previous color on the screen. It
makes transparency effects possible. In case the display format used is 16-bit color, it is
also possible to dither the output (4 x 4 ordered dither) for better quality.

While programmers can do any kinds of effects they want in software, they are often
limited by hardware which lowers their choices considerably so that the needed speed
boost can be obtained. With VS_VP V S25203, it has been an important design criterion to
make the hardware as configurable as possible. As a result, it is possible to generate
effects that were only possible previously with advanced software rendering packages,
and still do them all in real-time.

2.6 PCI Interface

The VS_VP VS25203 can be directly connected to a PCI bus without any extralogic. The
PCI interface provides the host with linear access to the frame buffer and registers (which
are memory mapped). In addition, bus mastering is supported so that textures and
individual triangles can be read from the main memory without host processor overhead.

2.7 Memory Management Unit

All memory is accessed through the Memory Management Unit. This has the advantage
that different types of data such as textures and display data can al share the same
memory; memory usage can thus be optimized separately for each application. Games, for
example, require alot of texture memory, whereas CAD requires alot of resolution.

For maximum performance, the memory interface supports SDRAM memory, which can
achieve a 800MB/s transfer rate (using 64-bit bus). In addition, a reduced bus width (32
bits) is possible if less memory is desired. It is aso possible to use SGRAM, which makes
a 2Mbyte configuration with good performance possible. Finally, for alow cost solution it
ispossible to use EDO DRAM.

The memory management unit also generates commands, which initiate the self-refresh
cyclesto the SDRAM, SGRAM or EDO DRAM.

rev. 1.03

08.03.00



12

2.8 SVGA and Video Refresh

VS252 SV GA Coreis 100% compatible with original IBM VGA implementation. It takes
use of PCI interface to provide optimizations for standard VGA 256-color mode and
extended 8 bit graphics modes. It extends the VGA CRTC counters for larger display
modes, and provides linear frame buffer and 64 bit sequencer model.

The video refresh logic supports 16-bit hi-color and 24-bit true-color display formats with
resolutions from 320 x 200 to 1600 x 1200. With the programmable clock generator,
refresh rates can be adjusted without limitations.

TV-output is also supported with configurable flicker filter.

2.9 Video Capture Unit

The independent video capture unit reads 4:2:2 YUV inthe ITU-R BT.656-3 format and
stores it into the memory for further use.

2.10 Block Transfer Unit

Theinternal Block Transfer Unit perfoms area copy and fill operation as well as hit copy
operations.

2.11 Internal Clocks

V S25203 contains two phase-locked-loop (PLL) frequency synthesizers, one for the video
clock and one for the processor.

2.12 Internal VideoDAC

VS25203 contains an internal triple 8-bit VideoDAC, which has a maximum operation
frequency of 200 MHz. Internal VideoDAC

2.13 External VideoDAC

It isalso possible to use external VideoDAC with the following features:

Triple 8-bit D/A converters

TTL compatible inputs

construction optionally +5V or +3.3 V.
V S25203 provides pins for an external VideoDAC: 8bit data bus for each color (RGB)
and al essential synchronization and blanking signals; see page 233.

2.14 External BIOS ROM Interface

The eight-bit BIOS ROM contains power-on initialization and mode setup routines. PCI
configuration power-on initialization data are also located in BIOS ROM. BIOS ROM
shares pins with the external VideoDAC.

rev. 1.03 08.03.00



2.15 Register Map

Register 5 (ctrl_reg_bar) defines the base address
of the Control Registers and register 4
(gr_ram_bar) defines the base address of the
Graphics Memory.

N.B. Both base address registers and the
alignment of memory areas are defined by PCI
Spec 2.1. Base addresses are typicaly set up by
the operating system/ BIOS.

Reserved

Total accessible PC memory space, 4GB.

|

L

Graphics Memory

Aperture 1 (16 MB)

Aperture 0 (16 MB)

|

L

Control Registers

Pixel Processor /
Texture Palette

Geometry Processor

Pixel Processor /
Shading program

Primitive Processor

Block Transfer Unit

System Control

Video Control

Video Capture

VGA Shadow

Pixel Processor

13

511

256

197
192

159

128
116

64
56

33
31
29
20

15

rev. 1.03

08.03.00



14

2.16 Summary of Registers

Register address Offset Register name

Pixel Processor 1 0004h |coef reg0

2 0008h [coef regl

3 000Ch [coef reg2

4 0010h |coef reg3

5 0014h |atex_confl

6 0018h |atex_conf2

7 001Ch |btex_confl

8 0020h |btex_conf2

9 0024h |base_addr

10 0028h |dither

11 002Ch |modulation

12 0030h [ppu_mode

13 0034h |frame_mode

14 0038h_[ppu_code_start

15 003Ch [palette_base
VGA Shadow 20-29 VGA shadow registers
Video Capture 31 007Ch [capt_base_conf

32 0080h [capt w_h
Video Refresh 33 0084h [video_width_height

34 0088h [screen width_height

35 008Ch |video_vblank

36 0090h |video_hblank

37 0094h |video_vsync

38 0098h |video_hsync

39 009Ch |video_base_conf

40 00AOh [video_bit config

41 00A4h [reserved
System control 42 00A8h |ma_cmd_addr

43 00ACh |master_state

44 00BOh |ma_int_addr

45 00B4h |ma_ext_addr

46 00B8h [reserved

47 00BCh [reserved

48 00C0h |status

49 00C4h |ref reg

50 00CBh [debug reg

51 00CCh [io_reg

52 00D0h [ext io_reg

53 00D4h |ext_io_reg2

54 00D8h [mem apt0 cfg

55 00DCh |mem aptl cfg
Block Transfer Unit 56 00EOh |blt_src_strd

57 00E4h |[blt tet strd

58 00E8h [blt fg color

59 00ECh [blt_bg color

60 00FOh [blt params

61 00F4h |blt_src_addr

62 00F8h [blt_tgt addr

63 OOFCh |blt_size

rev. 1.03 08.03.00




15

Register address Offset  Register name

Primitive Processor 64 0100h |cr_init

65 0104h [er dy

66 0108h |cr dx

67 010Ch [cg init

68 0110h [cg dy

69 0114h [cg dx

70 0118h [cb_init

71 011Ch [cb dy

72 0120h [cb_dx

73 0124h |ct init

74 0128h |[ct dy

75 012Ch [ct_dx

76 0130h [atu init

77 0134h [atu dy

78 0138h [atu_dx

79 013Ch |atv_init

80 0140h [atv_dy

81 0144h [atv_dx

82 0148h |btu_init

83 014Ch [btu_dy

84 0150h [btu dx

85 0154h |btv_init

86 0158h |btv_dy

87 015Ch [btv_dx

88 0160h |z shr

89 0164h [z init

920 0168h |z dy

91 016Ch [z dx

92 0170h [edge order

% 0174h |edge0 init

94 0178h [edge0_dx

95 017Ch [edge0 dy

96 0180h |edgel init

97 0184h [edgel_dx

98 0188h [edgel dy

99 018Ch [edge? init

100 0190h [edge2 dx

101 0194h |edge2 dy

102 0198h [grid_reg

103 019Ch |[p_init

104 01A0h [p dy

105 01Adh [p_dx

106 01A8h |x init

107 01ACh [y init

108 01BOh [y_end

109 01B4h raster_ext
Pixel Processor 128 -159 Code

256 - 511 Texture Palette
Geometry Processor 192 -197 Geometry Processor registers

rev. 1.03 08.03.00



16

3. Interfaces

3.1 Accessing Internal Registers

The VS25203 internal register ranges are available for access through the PCI interface.
The registers are mapped to the PCI memory starting from the memory location specified
by thectrl _reg_bar register in PCI configuration space, see page 27.

Because all the registers are 32bit registers, the index of each register must be multiplied
by four to get the relative memory address. For example if the PCI BIOS has configured
the VS25203 ct r| _reg_bar register to the value EO000000h then the cr _i ni t (64)
register (described in page 106) is mapped to the address EOOOOO0Ch + 64 x 4 =

E0000100h.
Range Function
0-15 Pixel Processor / General
20-29 VGA Shadow
31-32 Video Capture
33-41 Video Refresh
42-55 System Control
56-63 Block Transfer Unit
64-109 Primitive Processor
128-159 Pixel Processor / Code
192-197 Geometry Processor
256-511 Pixel Processor / Texture Palette

Register ranges not covered or not mentioned above should be considered as reserved and
not used.

3.2 Memory Apertures

The PCI interface maps the graphics card memory to the PCI bus. Different trandations
including linear mode and raw frame buffer mode are available.

In order to implement the interfaces to other PCl multimedia devices V S25203 provides
two simultaneous apertures to the memory (as suggested by the PClI Multimedia Design
Guide revision 1.0). It is possible to configure the apertures to provide different views for
the memory.

Linear mode is the similar to standard VESA VGA memory organizations however, when
used as a VESA 8 hit linear frame buffer the memory should be accessed in raw mode.
This appliesto the 8 bit modes only.

Raw mode is VS25203’s internal mode for storing data. Raw mode is different from linear
mode in that data in raw mode is organized in small 2D regions (exyl64 16 bits for
hi-color, or 64x 8 x 32 bits for true-color) so as to take advantage of fast accesses to
active rows in a SDRAM to reduce page misses; an active SDRAM row is typically 2048
bytes.

rev. 1.03 08.03.00



17

For hi-color (16-bit) pixels, the pixel block is 64 pixelsin the horizontal direction, and 16
pixels in the vertical direction, and each pixel is 16 bits. But for 32-hit pixels (i.e. 24-bit
color + 8-bit transparency) and depending on the memory configuration used, it is
typically 64 pixels wide by 8 pixels high to make it fit into 64 x 8 at 4 bytes per pixel to
give 2048 bytes.

Note that the memory image of the screen is allocated according to integral multiples of
the pixel block size. Depending on the screen resolution chosen, the visible area on the
screen may be smaller.

For example, to be able to use frame buffer as a texture map, all data must be in the same
mode to keep the operations straightforward. In order to see the internal frame buffer
format through the PCI bus, the aperture can be configured to convert from raw to linear
mode. And to do this, the aperture needs the information of the number of 2048-byte
blocks which the screen has in the vertical direction, so that the correct amount of raw
mode memory can be skipped when moving from one pixel position to the next
neighboring one on the screen. The apt _w dt h field of the nem apt 0_cfg and
mem apt 1_cf g registers defines the resulting linear mode row length.

The graphics memory is accessible through a 32MB memory window which is located as
specified by the gr _r am bar register, page 26. The uppermost bit of the address in the
memory window selects the memory aperture which is used.

3.2.1 Linear Mode

If the aperture selected is in the linear frame buffer mode then the address is first split to
x-coordinate and y-coordinate values for the frame buffer (or texture map) memory. The
address splitting is done based on the aper t ur e_wi dt h register value. Address is first
zero-level-compensated with gr _r am bar register.

3.2.2 Raw Mode

If the aperture selected isin raw mode then the address is used to access the local graphics
memory. In order to support memory configurations larger than 16MB the value of
apt _addr field x 2048 can be used to specify the start address of the graphics memory
within the aperture; see registers 54 and 55 on page 44.

rev. 1.03

08.03.00



18

3.3 PCI Bus

3.3.1 Overview

2.
1. |31. |6l
2. |32 |62
3. |33
1| &% Screen size 640 x 480 pixels

5. |35

\Ar3
7.
8.
9.
10. 64 x 32 pixels
11.
12. 16 bits per pixel
13. rhig=15
14.
15.

In raw mode, the screen is split on 64-pixel-column x 32-pixel-row pixel blocks. Blocks
are arranged on the screen as shown. The second block is situated below the first one and
so on. Depending on screen size, there are different number of blocks on the screen. In the
640 x 480 example, there are 10-block-columns x 15-block-rows = 150 blocks. Within a
block, pixels are arranged so that the second pixel is on the right hand side of the first one
and the 65™ pixel is below the first one. 16- and 32-bit data is arranged in memory as
follows:

Pixel O Pixell
B0 [Go|Ro [To |B1 [G1[Ry [T |

byteinmemory[ 0| 1| 2| 3§J4|5|6] 7
32bitmode  |Bo [Go|B1 |G1]Ro|To |R1|T1
16 bit mode RGB, |RGB,; JRGB, |RGB;

VS25203 has a PCI bus interface which conforms to the PCI local bus specification
Revision 2.1, see page 246.

The PCI interface of VS25203 contains two base address registers. One register is used to
map the internal registers and user controllable internal memories of V S25203 to the PCI
bus (register 5, page 27). And the other is used for mapping the graphics memory to the
PCI bus (register 4, page 26). See also the page 13. These base addresses are initialized by
the PCI BIOS (or the operating system) during boot-up.

rev. 1.03

08.03.00



19

PCI businterface feature summary:

Fast DEV SEL# assertion

When acting as a PCl target for write operations, the target does not typically
generate wait states. There are no wait states for register writes, but there are in some
cases of memory operations.

Memory on the graphics card is accessible using two independent apertures as
suggested by PCI Multimedia Design Guide revision 1.0.

Memory apertures do not perform color space conversions; YUV conversion is done
within the Pixel Processor.

V S25203 supports the conversions required for the full interoperability level in PCI
Multimedia Design Guide rev. 1.0.

3.3.2 Bus Master Functions and Commands

The V S25203 can perform the foll owing operations independently as a PCl master:

read sequences of triangle parameters for the rendering engine
upload data for textures and other images to the graphics memory
synchronize the PCI bus master operation to the operation of the rendering engine.

PCI bus mastering is used as follows:

initialize bus master command stream to system memory (This refers to host main
memory. It is NOT recommended that the graphics board memory be used for this
purpose)

load the start address of the bus master command stream to PCl master command
address (42) register (ma_cnd_addr)

write a non zero value to the highest byte of PCI master state (43) register
(master_state)

use PCl master state (43) register (mast er _st at e) to observe when the PCI bus
master operation is completed.

Notice that all the addresses referred to in PCl bus mastering are physical addresses.
Under virtual memory operating systems like UNIX, Windows 95 and Windows NT,
programs typically use virtual memory addresses which must be mapped to physical
addresses. Specia care must also be given to continuously allocated virtual memory
which may not correspond to a continuous block of physical memory.

VS25203 provides the following stream commands as a PCI master. Note that the
example sections contain only minimal parts of the whole stream program.

rev. 1.03

08.03.00



20

direct command PCI master stream opcode 01h
Description: Loading values to V S25203 internal registers. Previously known as regload.
Command format: Olaaaabb aaaa istheregister_address. bb isregister_count. Moves next bb 32-

bit values of the bus master stream to registers of V S25203, beginning
with register aaaa.

direct command
31|30|29|28|27|26|25|24|23|22]|21|20] 19|18 17]16]|15|14|13]12|11]|10| 9| 8| 7| 6| 5] 4[3]| 2] 1|0
01h register_address register_count
register value 1
register value 2
register value 3
register value n
Special: It isimportant to synchronize register loading between triangles with jump or wait
commands.
Example:
The direct command (01h) loads 45 (2Dh) register values to the registers of
V S25203, beginning at cr_init (64 = 40h) register. 32-bit register values are located
] after the command line. Note that in this example the last register valueisfor the
0100402Dh y_end (108) register.
value for register 64
value for register 65

value for register 108

rev. 1.03

08.03.00




jump command

21

PCI master stream opcode 02h

Description:

Command format:

Jump conditionally to the specified address when the specified conditionis met. Thisis
used for transferring the point where the stream is interpreted to another areain memory.
It isalso used for synchronizing the PCI master operation with the internal state of the

V S25203, for example, to wait until the previoustriangleis rendered. It can also be used
to generate an interrupt request.

02i Xaabb Wait until the condition is true and then jump to address
(statug[ 7:0] xor flag_xor) and flag_mask == 00h)
where status is the status (48) register.

jump command

31/30(29|28|27]26]|25|24|2

w

22|21]|20|19]18]17|16]15[14]|13|12]11]10]/ 9| 8| 7|6]|5]4[3|2]1]0

02h

i reserved flag_mask flag xor

jump_address

Special:

Example:

If theinterrupt bit i (bit 23) is one, an interrupt is generated when the jump command has
been read from the bus master stream. In other words, interrupt is generated when the bus
master encounters the jump command, not when the condition istrue. X isareserved field
and should be treated as zero.

The execution is halted at the jump command until the condition is true. After the
condition istrue, the execution continues at the address given by jump_address. Notice
that both words of this command are read by the PCl mastering logic before the waiting
for the flag values start.

The stream program waits until the condition: 03h and (03 xor status[7:0]) ==0is

true and then jumps to address 20000h which is specified right after the command

line. Note that this address is an absol ute physical address. The program also causes

02800303h

an interrupt since thei-field (bit 23) isone.

00020000h

See also:

Status (48) register, page 39.

rev. 1.03

08.03.00



22

read command

PCI master stream opcode 03h

Description:

Command format:

Transfers data from main memory address or from another memory mapped PCI device to
V S25203-based card. It is used for copying memory data from the host main memory to
the graphics board memory. This can be used, for example, for uploading textures. Notice
that the PCI interface aperture mapping functions can be utilized with the read command.
Also, the destination address is an address on V S25203; it is not a PCI bus physical
address.

O3aaaaaa Reads aaaaaa (read_count) 32-bit words (not bytes)

bbbbbbbb from PCI memory beginning with external source

cccececcc address cccecceee and writes them to memory
beginning with internal destination address bbbbbbbb.

read command

31/30]29|28]27]26|25]24(23]22] 21| 20[19]18[17]16[15]|14[13|12]11|10]/ 9| 8| 7|6 5] 4[ 3|2 1]0

03h read count
internal_address
external address
Special: It should be noted that bus mastering is not an especially effective way to move data
between locations on the local graphics memory. It istargeted for moving data from the
host CPU main memory or from other PCI boards/devices to V S25203 memory.
Example:
The program transfers a 256K B data block. Destination address is FFOOOh and source
address is B100000h.
03010000h
000FFO00N
0B100000h
rev. 1.03 08.03.00



wait command

23

PCI master stream opcode 04h

Description:

Command format:

Similar to the jump command. But instead of jumping, it continues to read the current
command stream without a jump. The wait command is used for synchronizing the PCI
master operation with the internal state of the V S25203, for example, to wait until the
previous triangle is rendered. It can aso be used to generate an interrupt request.

04i Xaabb Wait until the condition is true and then continues the stream
processing from the next instruction. The condition is given by:
(statug[ 7:0] xor flag_xor) and flag_mask == 00h)
where status is the status (48) register.

wait command

31|30|29|28|27|26|25| 24| 23| 22| 21|20|19|18]|17|16|15|14|13|12]|11|10] 9| 8| 7| 6| 5| 4| 3| 2] 1] 0

04h

i reserved flag mask flag_xor

Special:

halt command

If the interrupt bit i (bit 23) is one, an interrupt is generated when the wait command has
been read from the bus master stream. In other words, interrupt is generated when the bus
master encounters the wait command, not when the condition istrue. X isareserved field
and should be treated as zero.

The execution is halted at the wait command until the condition istrue. After the
condition istrue, the execution continues at the stream location following the address of
the wait command.

PCI master stream opcode 80h

Description:

Command format:

Halts PCI bus master operation. It istypically used as the last command in the PCl master
command stream.

80000000h

halt command

31|30|29|28|27|26|25|24 23|22|21|20|19|18|17|16|15|14|13|12|11|10| 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2|1 | 0

80h

reserved

Example:

80000000h

When the stream program reaches the halt command, the PCI bus master halts its
operation and its stream execution.

rev. 1.03

08.03.00



24

3.3.3 Bus Master Programming Guidelines

Example:

Some guidelines for using PCI bus mastering are as follows:

- Usethedirect command to load a single register or a group of registers.

- Usejump or wait to synchronize and control program flow within the DMA buffer.

- wai t isacommand similar toj unp. It continue to run from the next address when
the status is met, so it does not contain the jump address.

- Usetheinterrupt and the halt command to synchronize with the application

- Make surethe interrupt and the halt command are put in place before starting DMA.

- Theinterrut handler should check that DMA transfer is completed by polling MSB

byte of register 43.

Address Data Comment

0x12345678  0x0100402D load 45 registers starting from register 64 (0x40)
0x1234567C  0x00000000  value for register 64

0x12345730  Ox04000FOF  wait until status is OxOF, then continue
0x12345734  0x04800000  generate an interrupt

0x12345738  0x80000000  halt

To start a DMA,

Write physical address of start of DMA command stream to register 42
Write OXFF000000 to register 43 to start DMA

An interrupt should be generated when the current DMA command stream is executed

3.3.4 PCI Configuration Space Registers

Register Number | Address Offset |Register name |Description
0 0000h id reg ID regiger
1 0004h datus cnd Status command register
2 0008h dass rev Classrevison regiser
3 000Ch cfgo Configuration O register
4 0010h gr_ram bar Graphics memory base address register
5 0014h ctrl_reg_bar Contral register base addressregister
11 002Ch sub id Subsystem ID register
12 0030h exp_rom_bar Expanson ROM base address register
15 003Ch cfgl Configuration 1 register
16 0040h core dk_cfg Core dock configuration register
17 0044h mem_cfg Memory configuration register
18 0048h video dk cfg Video clock configuration register
19 004Ch reg_acc addr Register access addressregiger
20 0050h reg_acc data Register access data register
21 0054h fedt reg Feature register
rev. 1.03 08.03.00




25

[id_reg [register 0 |offset 0000h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
device_id
vendor_id
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
vendor_id 15:0 Manufacturer of the device
device_id 31:16 Device
ID Register contains information about the manufacturer and the device
vendor_id
Thisfield is hardwired to 1292h.
device_id
Thisfield is hardwired to FCO4h to identify the device type.
status_cmd [register 1 |offset 0004h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
status
command
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
command 15:0 Refer to the PCI local bus rev 2.1
status 31:16 Refer to the PCI local bus rev 2.1
Status Command Register bit 1 enables or disables VS25203 on PCI bus:
0 disable
1 enable
Status Command Register bit 2 (bus master control) enables or disables PCl bus master
function:
0 disable
1 enable
[class_rev [register 2 |offset 0008h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
class_code
class_code | revision_id
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Fields Field Bits Description
class_code 31:8 Generic function of the device
revision_id 7:0 Revision
08.03.00

rev. 1.03



26

Class Revision Register contains two fields:

class_code
| dentifies the generic function of the device; V S25203 is hardwired to 03000000h as a

display controller.
revision_id
Device-specific revision identifier.

[cfg0 |register 3 |offset 000Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
hdr_type
lat tim cache Is
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cache Is 7:0 Cache line size
lat_ tim 15:8 Latency timer
hdr_type 2316  |Header type
Configuration 0 Register contains the following fields:
cache_ls
Cacheline size. Field specifies the cache line size in 32-hit units
lat_tim
Latency timer. The value of the latency timer for this bus master in PCI bus clock units.
hdr_type
Header type. Identifies the layout of bytes 0010h to 003Fh, and also whether or not the
device contains multiple functions. Hardwired to O.
|gr_ram_bar |register 4 |offset 0010h
Fomlat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
gr_ram_bar
gr_ram_bar
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
gr_ram_bar 31:0 Graphics memory base address
Graphics Memory Base Address Register specifies the graphics memory base address
(Aperture 0 and Aperture 1).
See also page 13.
rev. 1.03 08.03.00



27

[ctr]_reg bar [register 5 |offset 0014h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ctrl_bar
ctrl_bar
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ctrl_bar 31:0 Control register base address
Control Register Base Address Register. Specifies the base address of the control
register. See also page 13.
[sub_id [register 11 |offset 002Ch
Fomt 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
sub_id
sub_ven_id
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
sub_ven_id 15:.0 Subsystem vendor ID
sub_id 31:16 Subsystem ID

Sub ID Register contains auxiliary information about the manufacturer and the device.
sub_ven_id
Thisfield isread from external ROM during bootup.
subsystem vendor id LSB = ROM(LAST_ADDR-7)
subsystem vendor id MSB = ROM(LAST_ADDR-6)
sub_id
Thisfield isread from external ROM during bootup.
subsystem id LSB = ROM(LAST_ADDR-5)
subsystem id MSB = ROM(LAST_ADDR-4)

[exp_rom_bar [register 12 |offset 0030h
FOI'I‘.nat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
rom_bar
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
rom_bar 31:16 Expansion ROM base address

Expansion ROM Base Address Register has the following field:

rom_bar
Contains base address information for expansion ROM.

rev. 1.03

08.03.00



28

[cfgl [register 15 |offset 003Ch
FOl‘mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
max_lat min_gnt
int_pin int_line
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
int_line 7.0 Interrupt line
int_pin 15:8 Interrupt pin
min_gnt 23:16 Minimum grant
max_lat 31:24 Maximum latency

Configuration 1 Register contains the following fields:

int_line

Interrupt line. Contains interrupt line routing information. This field istypically set by the

PC motherboard BIOS.

int_pin

Interrupt pin. Thisfield is hardwired to avalue 01h to specify that INTA# is the interrupt

pin used.

min_gnt

Minimum grant value. Specifies the length of the device’s burst period in 250nsec units.
Hardwired to 2.

max_lat
Maximum latency value. Specifies how often the device needs to gain access to the bus in

250nsec units. Hardwired to 0 to indicate that VS25203 does not have hard latency
requirements.

| core_clk_cfg

Format

Fields

|register 16 |offset 0040h |

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
no |
r_coef | m_coef | n_coef
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Bits Description

no 31 non-overlap mode

n_coef 6:0 N coefficient for core clock

m_coef 13.7 M coefficient for core clock

r_coef 15:14 R coefficient for core clock

Core Clock Configuration Register.

Controls the internal clock buffer non-overlap time for debugging purposes. 0 for shorter
non-overlap, 1 for longer non-overlap. Typical value for non-overlap is 0.

rev. 1.03

08.03.00



29

The core clock frequency can be calculated from the formula:

m_coef +2

Four = (n_coef +2)x 27— *Fosc

where:
n_coef, m_coef, r_coef = coefficients
Fosc = quartz crystal or external clock (MHz)

For additional information see page 152.
After boot-up register contains value of 8000BE87h (Fout = 50 MHZz).

Caution: Unsuitable clock frequency parameters may cause permanent damage to the

device.
[mem_cfg [register 17 |offset 0044h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
dr | sg | J2x | | refrate | depth |wi| ch
mode_reg
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
dr 31 mm_dram
sg 30 mm_sgram
2x 28 2x memory mode
ref_rate 22:20 refresh rate
depth 19:18 mm_1 2 4 depth
wi 17 mm_16_32_width
ch 16 mm_8 16_chips
mode_reg 15:0 SDRAM mode reg. value/256 & DRAM param.

Memory Configuration Register descriptions.

mm_dram
0 if not using DRAM
1 if using DRAM

The default memory type (both bits 30 and 31 ='0") is SDRAM memory.

mm_sgram

0 if not using SGRAM
1 if using SGRAM

2x memory mode

0 norma memory mode
1 2x memory mode

refresh_rate

000 default memory refresh rate
001 3x rate

010 5% rate

rev. 1.03 08.03.00



30

mm_1 2 4 depth
memory "depth" parameter

00 if onelevel of memory circuitsis used
01 if two levels of memory circuitsis used
10 if four levels of memory circuitsis used

if DRAM memories are used then only supported memory depthis 1,

thisfield is used to indicate the size of the memory circuits

00 for 256K x16 DRAM

01 for IMx16 DRAM and also for 4AMx16 DRAM
(the 4AM x16 DRAM must be of type which uses same amount of CAS bits as
typical IMx16DRAM)

mm_16_32 width
0 if 16 bit wide memory buses are used (SDRAM only parameter)
1 if 32 bit wide memory buses are used

value for thisfield is 1 for SGRAM boards

mm_8 16_chips

(SDRAM only parameter)

0 if 8 bit wide memory circuits are used

1 if 16 bit wide memory circuits are used
value for thisfield is 1 for SGRAM boards

mode_reg
SDRAM (SGRAM) mode register / DRAM timing

The mode _reg is shared between two uses:

1) on DRAM configurations to provide timing parameters for the memory
accesses.

2) for SDRAM configuration to provide the value which is used

in SDRAM mode register configuration.

1) DRAM parameters

The DRAM timing parameters are derived from the mode_reg bits as follows:
(the names of the timing parameters are intended to correspond
to the timing parametersin typical DRAM datasheets)

All timings are relative to the core clock frequency

mode_reg(0) T_AS

address set up time (address setup before RAS or CAS)
0=0cycles

1=1cycles

mode_reg(1) T_CAS
CASH# pulse width
0=1cycles

1=2cycles

rev. 1.03

08.03.00



mode_reg(2) T CP
CAS precharge time
0=1cycles
1=2cycles

mode_reg(3) T _CSR
CASto RAS setup time
0=0cycles

1=1cycles

mode reg(5:4) T_RAS
RAS# pulse width

00 =4 cycles

01 =5cycles
10=6cycles

11 =7 cycles

mode_reg(6) T_RCD
RASto CASdeay
0=1cycles

1=2cycles

mode_reg(8:7) T_RP
RAS precharge time

00 = 1cycles

01 =2cycles
10=3cycles

11 =4 cycles

mode_reg(9) T _RSH
RAS hold time
0=0cycles

1=1cycles

2) SDRAM mode register value

31

Thenode_r eg parameters are also used to configure the mode register of the external
SDRAM or SGRAM memories. The programming is achieved by generating a pseudo

read operation during the circuit bootup time. The read addressis formed from the

node_r eg (15:0) value by multiplying it with 256. This read operation is handled so that
instead of performing the typical activate and read cycles for the memory a mode-register-
set cycleis generated. The mode-register-set is generated so that it replaces the activate
cycle so the read address must be correctly aligned as a SDRAM row (activate) address.

The alignement requirements depend on the other memory parameters given in this
register. See the examples bellow for more information.

On the current generation of SDRAM/SGRAM circuits the correct value for the mode

register is: 030h which correspondsto

burst length "000" = burst length 1
= sequential
cas latency "011" = 3 cycle latency

burst type "0"

rev. 1.03

08.03.00



32

Configuration examples:

mem_cfg description
00030180h SDRAM memory 4x16 bit memories (8 Mbytes)
mode_reg =0180h
mm_8 16 chips =1
mm_16 32 width=1
mm_1 2 4 depth=00
000100C0h SDRAM memory 2x16 bit memories (4 Mbytes)
mode _reg =0COh
mm_8 16 chips =1
mm_16_32 width= 0
mm_1 2 4 depth =00
40030180h 2%x(256K x32) SGRAM
40070300h 2x2%(256K x32) SGRAM
800001CO0h 4x256K x16bit DRAM
mode _reg =01C0h
T_AS 0 (0 cycles)
T _CAS 0 (1 cycles)
T CP 0 (0 cycles)
T CSR 0 (0 cycles)
T_RAS 0 (4 cycles)
T_RCD 1 (2 cycles)
T RP 11 (4 cycles)
T RSH 0 (O cycles)
[video_clk_cfg [register 18 |offset 0048h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
r_coef | m_coef | n_coef
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
n_coef 6:0 N coefficient for core clock
m_coef 13:7 M coefficient for core clock
r_coef 15:14 R coefficient for core clock

Video Clock Configuration Register. The video clock frequency can be calculated from

the formula:

where:

+
E)UT = (ﬂ Cno/le_fcfezjgxzzrcoqf XE)S(?

n_coef, m_coef, r_coef = coefficients
Fosc = quartz crystal or external clock (MHz)

For additional information see page 152.

rev. 1.03

08.03.00




33

After boot-up register contains value of 0000E087h (Fout = 25 MHz).

Caution: Unsuitable clock frequency parameters may cause permanent damage to the

device.
[reg_acc_addr [register 19 |offset 004Ch |
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
reg acc_addr
reg_acc_addr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
reg_acc_addr 31:0 register access address

Register Access Address Register contains the address for internal register access.

[reg_acc_data

Format

Fields

|register 20 |offset 0050h
31 30 29 28 27 2 25 24 23 2 2 20 19 18 17 16
reg_acc_data
reg acc_data
5 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description

reg_acc_data

310 register access data

Register Access Data Register provides an aternative method for accessing the
VS25203 internal registers in situations where normal memory mapped register access is
not available. Obviously this method is very slow. In order to use the access registers the
target register address is written to the address register (19), and the value is written to the
data register (20). The actual register write happens when the most significant byte of the
access data register is written. This can be done with an 8, 16 or 32-bit configuration

register write.

rev. 1.03

08.03.00



34

[feat_reg |register 21 |offset 0054h
FOl‘mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ddv|euio
ffe | ffm| | fft | | vee] vsl| vrs | vde
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ddv 17 disable digital video
euio 16 enable user I/0 [6:5]
ffe 15 flicker filter enable
ffm 14 flicker filter mode
fft 12:8 flicker filter thresh
vee 3 VGA extension enable
vrsl 2 VGA refresh select lock
vrs 1 VGA refresh select
vde 0 VGA decode enable
ddv

Disable digital video should be set to "1" when the digital RGB-port is used for other
purposes, for example video capture or flash memory programming.

euio

Enable user 1/0 [5:6], extra enable signal required for user 1/0(6) and user 1/0(5) signals.
ffe

Flicker filter enable, abit for activating the flicker filter and interlace module.

ffm

Flicker filter mode, affects the mode of operation for the flicker filter.

0 default value, optimal in most cases.

1 modified algorithm, which might provide better results on 100/120 Hz televisions.

fft

Flicker filter threshold, threshold value for flicker filtering O means no threshold (filter
always), 16 means no filtering (perform interlace conversion still).

vee

VGA extension enable, enables using of extended V GA registers.

0 only standard VGA registers available.

1 extension registers are also available.

value after reset O (extension registers not visible).

vrsl

VGA refresh select lock, refresh register selection lock.

0 automatic selection of refresh registers active.

1 current selection locked.

value after reset O (not locked).

vIs

VGA refresh, selects 3D/VGA video refresh control.

0 3D video refresh registers used.

1 VGA refresh registers used.

value after reset 1 (VGA enabled) This bit changes its state automatically if VGA or 3D
refresh registers are accesses, unless the select lock is active.

vde

VGA decode enable, activates the decoding of the standard VGA memory and 10 ranges.
value after reset 1 (VGA enabled).

rev. 1.03

08.03.00



35

3.3.5 Interrupts

V S25203 provides the following interrupt facilities:

Video scanline:

If video interrupt is alowed, video scanline IRQ is enabled when vq field of the
ref _reg register 49 isone. vi field of the st at us register 48 is one when interrupt is
active. IRQ is triggered when the value of the vi deo_y_coor d field of the st at us
register reaches current video refresh scanline, (vi deo_y_ref field of theref _reg
register). The interrupt can be reset by writing value "1" into the vi field of the st at us
register.

PCI master:

When PCl master causes an interrupt, mi field of the st at us register is one. The
interrupt can be reset by writing value "1" into that samem field of the st at us register.
See additional information about the interrupt line and interrupt pin specified on page 28.

Field capture:

When field capture causes an interrupt, capi field of the st at us register is one. The
interrupt can be reset by writing value "1" into that same capi field of the st at us
register. For additional information see Video Capture base configuration register
(capt _base_conf register 31).

VGA interrupt:
Refer to the chapter VGA Interrupt Generation on page 160.

Geometry Processor interrupt:

the vi field of thest at us register 48 is one when interrupt is active. The interrupt can
be reset by writing value "1" into the vi field of the st at us register. The interrupt is set
by st at us_reg_i n register 194. For additional information see register 194.

rev. 1.03 08.03.00



36

3.4 System Control Registers

3.4.1 Overview

The system control registers contain registers which are used to control the PCI master
functionality. Also some system debugging and state analysis registers are placed into this
category.

PCl master control registers were originally placed at the PCI configuration space. But the
present placement offers a more portable high performance interface for accessing them.
This register set also contains extra |/O registers (page 41) which can be used to control
the general purpose I/O pins of VS25203 (user_io0[6:0] pins B9, C10, C12, B12, A12, C13
and B13, see page 234). These pins are used in a system dependent way.

With registers 54 and 55 it is possible to prepare some transformations between apertures,
see page 44.

3.4.2 Registers

Register Number Address Offs#t | Register name Description
42 00A8h ma _cmd_addr PCI magter command address register
43 00ACh mester_tate PCl master state register
44 00BGh ma int_addr PCl magter internd addressregister
45 00B4h ma_ext_addr PCl madter external address register
46 00B8h reserved -
a7 00BCh reserved -
48 00COh satus Sausregister
49 00C4h ref_reg Video referenceregister
50 00C8h debug_reg Debug register
51 00CCh io_reg /O register
52 00DOCh ext_io_reg Extral/O register
53 00D4h ext_io reg2 Extral/Oregister2
54 00D8h mem_apt0_cfg Memory aperture-0 configuration register
55 00DCh mem _aptl cfg Memory aperture-1 configuration register

rev. 1.03

08.03.00




37

[ma_cmd_addr

Format

Fields

|register 42 |offset 00A8h
31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
ma_cmd_addr
ma_cmd_addr
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description
ma cmd _addr 31.0 PCI master command address

PCI Master Command Address Register. Thisregister contains the start/current address
of the master stream. User writes the start address of the stream to this register before

starting the bus mastering operation. Note that this addressis a physical address.

[master_state

Format

Fields

|register 43 |offset 00ACh |
31 »® 2 B 27 26 2% 24 2B 2 A 20 19 18 17 16
master_st | master_cnt

master_cnt
5 14 13 1 1 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description
master_cnt 230 PCl master counter
master & 3124 PCl megter date

PCI Master State Register. This register, when read, provides debugging information
about the current state of the PCl master unit.

master_st

Master state. Non-zero value in master_st starts the PCI master and zero in master_st halts
the PClI master. Note that bit 2 (master enable) in the st at us_cnd register (a PCI
configuration space register) has to be set to one to enable the master function.
master_cnt

mast er _cnt isread-only, and is used only for driver debugging.

Refer to st at us_cnd (1) register on page 25.

rev. 1.03

08.03.00



38

[ma_int_addr |register 44 |offset 00BOh
Format 33 x»® 2 B/ 2 6 5 24 2B 2 2 20 19 18 17 16
ma_int_addr
ma_int_addr
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ma.int_addr 31.0 PCI magter interna address
PCI Master Internal Address Register. This read-only register contains the source
address during the bus master stream read command (opcode 03h); for example,
(gr_ram bar + offset). Note that ma_i nt _addr (read-only) is used only for driver
debugging.
[ma_ext_addr |register 45 |offset 00B4h
Format 33 »® 2 B/ 2 26 5 24 2B 2 2 20 19 18 17 16
ma_ext_addr
ma_ext_addr
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ma ext_addr 310 PCl master externa address

This read-only register contains the destination address for the bus master stream read
command (opcode 03h); for example, (gr_ram_bar + offset). Note that na_ext _addr
(read-only) is used only for driver debugging.

rev. 1.03

08.03.00



39

[status [register 48 Joffset 00COh |
Format 31 30 29 28 27 26 25 24 23 2 21 2 19 18 17 16
video y coord
mi | pv | vi | capi| gpi | epf | gpo] biti] ve | id1 ] id2 | okl | ok2
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

video y coord 26:16 Videoy coordinate

mo 15 PCl master interrupt active

pv 14 Pixd vishle

Vi 13 PCI video interrupt active

capi 12 Video Captureinterrupt active

gpi 11 Geometry Processor interrupt active

gpf 7 Geometry Processor flag

gpC 6 Geometry Processor stream0 flag

blti 5 Block Trangfer Unitidle

VC 4 video compare

idl 3 Primitive processor idle

id2 2 Pixe processor idle

okl 1 Primitive processor init ok

ok2 0 Pixd processor init ok

video_y coord

Video y coordinate. Current video refresh scanline.

mi

PCI master interrupt active. This bit is set to "1" when VS25203 has interrupt request
active when interrupt is activated by the PCI master block. The interrupt is active until the
device driver resets the interrupt. PCl bus master interrupt is reset by writing a value "1"
into thisfield.

pv

Pixel visible. This bit is set to one when a visible pixel has been detected by the Pixel
Processor in the zr ead operation. The bit is reset by writing a value "1" into this field.
Refer tothegri d_r eg (102) register.

V1

PCl video interrupt active. This bit is one when the device has an active IRQ. This
interrupt is caused by the vi deo_y_ref field of ref _reg (49) register through the
video-y comparator. The interrupt is active until the device driver resets the interrupt.
Video interrupt is reset by writing avalue "1" into this field.

Capi

Video Capture interrupt active. This bit is set to one when the circuit has interrupt request
active if the interrupt has originated from the Video Capture unit. The interrupt is active
until the device driver resets the interrupt. The video interrupt is reset by writing the value
"1" into this register bit.

gpi

PCl Geometry Processor interrupt active. This bit is one when the device has an active
IRQ. Video interrupt can be reset by writing a value "1" into this field. See aso
Status_reg_i n, register 194.

rev. 1.03

08.03.00



40

gpf

Geometry Processor flag.

gp0

Geometry Processor stream O flag.

blti

Block Transfer Unit idle. Indicates status of the Block Transfer Unit.
1 idle

0 busy

vC

This hit is one when the vi deo_y_coord field value is equal or greater than the
vi deo_y_ref vaueof theref reg, register 49.

id1

Primitive Processor idle. This bit is one when the Primitive Processor isin theidle state.
id2

Pixel Processor idle. This bit is one when the Pixel Processor isin theidle state.

okl

Primitive Processor initialization ok. This bit is one if initial values are alowed to be
written to the Primitive Processor.

ok2

Pixel Processor initialization ok. It is used for finding out when the Pixel Processor can be
initialized. In VS25203, itisgivenby i d1 andi d2.

[ref reg |register 49 |offset 00C4h
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
|vgaq| vq | video y ref
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

vgaq 12 VGA IRQ ena

vq 11 Video IRQ

video y ref 10.0 Videoy reference

vgaq

If this bit is set then the VGA unit generated interrupt is routed to the PCl bus. An
interrupt which isinitiated by the the VGA block must be reset using the VGA unit.

vq

Video IRQ. When this bit is set to one the device will generate an interrupt request (IRQ)
when the vi deo_y_coor d field value of the st at us register (49) is equal or greater
thanthevi deo_y_ref vaue

video_y ref

Video y reference scanline.

rev. 1.03

08.03.00



41

[debug_reg |register 50 Joffset 00C8h
F ormat 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
debug_reg
debug_reg
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
debug reg 31.0 System debug register
Hardwired to zero.
[io_reg |register 51 |offset 00CCh
Format 31 30 29 28 27 26 2 24 23 2 21 20 19 18 17 16
| user_io_out[6:0] | | user_io_in[6:0]
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
usy_io_out[6:0] 14:8 User |/Oregigter (read-only)
user_io in[6:0] 6.0 User I/Oregister (read/write)
user_io_out[6:0]
Seven general purpose user_io pins of the V S25203, where the value is driven out from
the pins. The actual direction of the pins (input/output) depends on the user 1/O enable bits
inextra_io_reg (52) register. See also miscellaneous signals on page 234.
user_io_in[6:0]
The value read from the user_io pins.
[ext_io_reg |register 52 |offset 00DOh
F ormat 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
tm |eie | | usr_io_ena extra_out_data
extra_out_data extra_in_data
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
tm 31 Test mode
de 30 Extral/O enable
ug_io ena 28:24 Usr 1/0 enablg[4:0]
extra_out_data 238 Extraout data vaue
extra in_data 7.0 Extrain datavdue
rev. 1.03 08.03.00



42

extra_in_data

Blue color bus B[7:0] of the DAC or BIOS data.

extra_out_data

Red and green color buses R[7:0], G[7:0] of the DAC or high and low BIOS addresses.

It gives the value driven on the RG pins (digital video), if extra I/O enable is active. See
also external DAC signals on page 233, chapter Signal Descriptions.

usr_io_ena

Controls the direction of the user 1/O pins [4:0].

O=not driven-input

1=driven-output

each pin has a separate control bit.

(9(3

Extra 1/0O enable. Controls the driving of the ext r a_out _dat a field to the Red/Green
DAC signd lines; if eile=0, the value is not driven.

tm

Reserved for test purposes. Should be zero.

Caution: Be careful when setting bits 28:24; as they define the direction of i o_r eg (51)
register.

[ext_io reg2 |register 53 |offset 00D4h
Format 31 30 2 28 27 26 25 24 23 2 21 20 19 18 17 16

edbel

|usr_i0_e2 | extra_out_data_b
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

edbe 31 Extraout data b ena

usr_io €2 9:8 User 1/O enabl€6:5]

extra out data b |70 Extraout data value for B

edbe

Enable signal for extra data out value

usr_io_e2

Controls the direction of the user I/O pins[6:5].

0 not driven-input

1 driven-output; each pin has a separate control bit.

extra_out_data b

Data out value of B component
rev. 1.03 08.03.00



43

[mem_apt0 _cfg [register 54 |offset 00D8h
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
rl0 | mo0 | ws0 | bs0 | | apt0_width | | apt0_height
apt0_addr
15 14 13 12 n 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
rl0 31 Aperture 0 raw / linear mode access
m0 30 Aperture 0 16/32 bit mode
ws0 29 Aperture 0 word swap
bsO 28 Aperture 0 byte swap
apt0_width 26:24  |Aperture Owidth
apt0_height 21:16 Aperture 0 height
aptOZaddr 13.0 Aperture 0 dart address
apt0_width

Aperture 0 width. Used in splitting the X and Y coordinates from the memory address in
linear mode. The value is the number of bits in X coordinate. Values are trandated as
presented in the table above.

Value Texture/screen width
(pixels)

32

64

128

256

512

1024

2048

N0 WINFLIO

Reserved

apt0_height

Aperture 0 height in 32 pixel boxes

apt0_addr

Aperture O start addressin 2048 byte blocks

ws(

Aperture 0 word swap. If this bit is one then the memory accesses will have the 16-bit
words swapped, thus e.g. byte ordering 3210 becomes 1032.

bs0

Aperture O byte swap. If this bit is one then the memory accesses will have the byte
ordering swapped, thus byte ordering 3210 becomes 0123. This can be used in
combination with ws to produce the ordering 2301 from 3210.

m0

Aperture 0 16/32 bit mode

0 16-bit mode (or packed YUV)

1 32-bit mode (ARGB or Y UV-24+a mode)
rl0

Aperture 0 raw/linear mode:

0 the apertureisin raw mode

1 the apertureisin linear frame buffer mode

rev. 1.03

08.03.00



44

mO, apt0_width and apt0_height are used only when the aperture is in the linear frame
buffer mode.

[mem_apt1_cfg

Format

Fields

| register 55 |offset 00DCh
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
rl1 | ml | wsl | bs1 | | aptl_width | | aptl_height
aptl_addr
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description
rll 31 Aperture 1 raw / linear mode access
ml 30 Aperture 1 16/32 bit mode
wsl 29 Aperture 1 word swap
bsl 28 Aperture 1 byte swap
aptl width 26:24 Aperture 1 width
aptl_height 21:16 Aperture 1 height
aptl_addr 13.0 Aperture 1 gtart address

Seenmem apt 0_cf g register (register 54).

3.5 Graphics Memory Type

The preferred memory type for VS25203 is 1M x 16 Synchronous DRAM (SDRAM).
Full VS25203 performance can be achieved by connecting VS25203 with four 16-bit
wide SDRAM devices. A version with lower performance can be created by using only
two 16-bit wide SDRAMs. The performance drop is mostly significant when high
resolution and/or true-color modes are used.

It is also possible to use 32-bit wide Synchronous Graphics DRAMs (SGRAM) with
V S25203. SGRAM prices are higher than SDRAM prices for the same memory size, but
because of their different configuration a graphics system with a smaller total memory can
be created by using SGRAMs. Too small a memory will obvioudly limit the texture
capabilities of VS25203.

For lower performance systems V S25203 can also be combined with EDO DRAMS.

Note that for SDRAM and SGRAM, burst access (meaning the transfer of multiple data
phases per a single address phase which requires programming the SDRAM/SGRAM
mode register with the burst length) is not used in VS25203. In other words, the burst
length is only 1. Instead, V S25203 uses pipelined accesses to the current page which has
no performance differences with SDRAM/SGRAM burst accesss. Typically on larger
triangles the frame and Z buffer accesses use up to 32 consecutive cycles. For textures, the
average consecutive access count to asingle page islower.

rev. 1.03

08.03.00



45

The following SDRAM commands are used by V S25203:

mode register write

precharge

activate

read/write

refresh
V S25203 treats SGRAM accesses similarly and does not currently use any of the SGRAM
special features.

rev. 1.03

08.03.00



46

4. Geometry Processor

4.1 General Information

The Geometry Processor is based on 3-issue VLIW architecture with a packed 32-bit
instruction word. It has three Arithmetic Units (AU) and additional units for hardware
division, logic operations and other tasks. The AUs have three-cycle pipelines with
multiplication as the first stage, addition as the second and shifting as the final stage. The
addition is also used as the second stage of the multiplication, so both cannot be started on
the same cycle. The processor also has three integrated data memories, so thereis no need
to use the external graphics memory during calculations.

The Geometry Processor interfaces to the other blocks of the V S25203B by having nearly
full access to the registers of the chip. These registers can be written from the A-register
of the AU2. Normally the task of the Geometry Processor is to process a data stream and
calculate values to the Primitive Processor and Pixel Processor registers. The stream is
read from the external graphics memory to the stream buffer, from where it can be loaded
to the AU registers one 64-bit word at atime.

=1 STREAMIO X > DATAPATH —— REGISTER OUT

VA VAN

| INSTR.
CONTROL < I

Figure 4.1-1 Geometry Processor, top-level architecture.

Figure 4.1-1 shows the top-level architecture of the Geometry Processor. The processor is
optimized for 3D scene processing. Input data comes as a stream and the final result isa
set of initialization values for the other unitsin the VS25203B. The Stream 1/O Unit
provides the input data for the Geometry Processor. The data can come from either
through the PCI interface (direct stream data) or from the external graphics memory
through the Memory Manager. The Stream 1/O can a so be used to write data to the
external memory. The Datapath, described in chapter 4.2, does the actual work controlled
by the Control block that fetches and decodes the 32-bit instruction words. The Register
Out block provides the interface for the other unitsin the VS25203B chip.

The program that controls the Geometry Processor is given by the user and is stored in the
external graphics memory. The address space for the program memory is 16384 words,
and the location in the external graphics memory is given by the user in the CODEBASE
register (seecode_conf i g, register 193 and the page 99). The program is cached into a
4-way set-associative on-chip instruction cache with a 128 word block size. The program
can also initiate prefetching of the cache blocks.

Asisusual for aVLIW processor, the architecture and pipeline in the Geometry Processor
are visible to the programmer, and he or she must take into account all the pipeline
effects. This enables one to write maximally efficient code, but requires more carein
programming. To make sure the instruction cache is used efficiently it isimportant to
organize the code properly.

rev. 1.03

08.03.00



47

4.1.1 Geometry Processor Bus Structure

The Geometry Processor has one 32-bit wide global data bus called the General bus. This
busis used to transfer data between the Control block, Stream /O and the Datapath. In
addition to the General bus, the Stream /O Unit transfers data read from the stream using
the Stream bus, which is a combination of three 32-bit buses, one for each of the
Arithmetic Units. By using thisbusit is possible to read up to three values from the
stream in one instruction.

Internal to the Datapath, the Arithmetic Units are connected to the local data memories
using two buses per AU. This enables transfer of up to six data valuesin oneinstruction.
One of the busesis used to write data from the AU’s A-register to any of the memories
and read data from the associated memory to the Y -register. Thesecond bus is used to
read data from any of the data memories to the X-register of the AU. I.e. for each of the
AUs, during one instruction execution, it is possible to read one value to the X-register
and either read one value to the Y -register or write one value from the A-register.

In addition to these Geometry Processor local buses there are three other buses involved
in the operation of the Geometry Processor. The External Stream Interface bus hasa
64-bit interface to the external graphics memory or to the PCI bus. The Register Out bus
offers a 32-bit-wide path for writing data to the registers of the other blocks on the

V S25203B chip. Finally the program for the Geometry Processor is read through the
Program Memory bus which has a 64 bit-wide path from the external graphics memory
to the instruction cache of the Geometry Processor.

4.2 Datapath Architecture

The Datapath of the Geometry Processor, illustrated in the Figure 4.2-1, does all the
calculations needed for executing the users programs. It consists of three parallel 32-bit
fixed point Arithmetic Units, a 32-bit wide Logic Unit, a Normalization Unit, and a 32/24-
bit Hardware Division Unit. The results of the three AUs can be combined together using
a 3-element vector adder. The Logic, Normalization, and Hardware Division Units are
closely connected to the Arithmetic Unit 2. They receive input from the X and Y -registers
of the AU2 (X2 and Y2), and the result of the Logic unit iswritten to its A-register (A2).

The A-register of the Arithmetic Unit 2 has some specia functionality over the A-
registers of the other AUSs. It is used as a source for the register out instructions (OUT) to
write data to the registersin the other units of the VS25203B. The A2 register is the only
one of the A-registers to receive data from the vector adder and the Logic Unit. The
instruction encoding additionally restricts the A2 register to be the only one receiving
values from the divide output registers (quotient and remainder), the STATUS register
(see chapter 4.5.6 on page 63), the N register (Result of Normalize instruction), and the
JMPREG,

rev. 1.03

08.03.00



48

il ! !

RAMO RAM1 RAM2

é:‘,ﬂ i Sl ”n, il > Stream bus
X 1Y X 1Y XY ¥4106IC || General bus
AUO AU AU2 | NORM
A A = oA E=fawow

Figure 4.2-1 Block diagram of the Datapath.

4.2.1 Arithmetic Unit

Each of the three Arithmetic Units has a 32-bit fixed point datapath with 24x24 => 48-bit
multiplier shown in Figure 4.2-2. The Arithmetic Unit has two input registers: the X-
register and the Y -register. The X-register can be loaded with values from any of the local
data memory banks, the Stream /O Unit, any of the A-registers of the AUs, and
immediate values from the instructions. The Y -registers may be loaded with values from
the corresponding local data memories only, i.e. YO may be loaded from RAMO only. The
Arithmetic Unit can a so use the values from the result register A as operands for its
instructions. This reduces the impact of the reduced functionality of the Y -registers and
makes it possible to effectively perform chained calculations.

rev. 1.03

08.03.00



49

X-bus Y-bus

! !

X-reg Y-reg

17

v

Stage 1 Y
v v :
Rureg Shifter

v v i

Adder/ Vector

Multiplier
Staggz Adfer

A-reg

li

A-bus

Figure 4.2-2 Block diagram of the Arithmetic Unit.

The multiplier result register R is accessed only through Arithmetic instructions. It
receives values through the Multiplier block which performsthe first stage of the
multiplications. The Multiplier block produces two intermediate values to be processed in
the Adder block to produce the final multiplication results. See Figure 4.2-2.

The Multiplier block is also used to format the operands for the other functions performed
by the Adder block. Results of the Adder block are normally stored into the M-register for
processing by the Shifter block. The A-register finally receives the AU results from the
Shifter unit after alatency of three instruction cycles.

For simple operations it is possible to bypass some of the intermediate registers to reduce
latency. If multiplication is not used, then the R-register may be bypassed and the values
of the X and Y/A-registers are used directly as operands for the instruction. Also if
shifting or vector addition of the resultsis not necessary, the results from the Adder can be
directly written to the A-register bypassing the M-register. This makesit possible to
perform for example addition of X and Y -register values directly to the A-register in one
clock cycle.

rev. 1.03

08.03.00



50

The AUs support the following instructions:

ADD Addition

SUB Subtraction

MUL Multiplication

SHIFT Shift M-register by up to +- 32 hits
SHIFTN Shift M-register by the value of the N register
NEG Negation of one value

PASS Passing through of input values
ZERO Result is zero

INC Increment A-register value

DEC Decrement A-register value

ABS Absolute value of an AU register

NEG_ABS Negation if the absolute value of an AU register
ADD_ABS Add the absolute value of the X-register to A-register

SUB_ABS Subtract the absolute value of the X-register from A-register
SAT Saturate value of the A-register to 8-bit signed range
SATU Saturate value of the A-register to 8-bit unsigned range

In addition of these AU2 also supports the vector adder instructions, which allows
addition of any of the shifted values of the M-registersin the AUs. One or two of the M-
register values can also optionally be negated. This allows the programmer to perform
pipelined 3-element vector dot-productsin asingle cycle.

The Datapath supports two different numeric formats. Both of the Datapath numeric
formats use 2's complement numeric representation. The first format isanormal 32-bit
wide integer format. The second is a 32-bit wide fixed-point format where the binary
point is between the sign bit and the mantissa. The values that can be represented by these
formats are summarized in the table below:

Integer Fixed point
Minimum value 2% -1
Maximum vaue 2.1 1-20%
Smallest difference 1 Ve

Since the inputs of the Multiplier blocks are only 24-bit wide, they cannot use the whole
32-bit data range supported by the Datapath. The multiplication of two integer type
operands of 24 bits resultsin a 47-bit wide result when using 2's complement
representation. However the final result of the multiplications should fit to a 32-bit wide
register.

For integer data, if the operands are too big, the result can overflow the data range. For the
fixed point case, the result can never overflow, but if the values are too small the result of
the multiplication can underflow. To support use of these two formats in multiplications,
the Multiplier block can multiply either the lower 24 bits of the operands (integer format)
or the upper 24 bits (fixed point format). In the case of integer format multiplication, the
32 lower bits of the result contain the desired multiplication result. For the fixed point
case, the upper 32 bits contain the result. The instruction set supports direct loading of
upper or lower 32 bits of the result to the A-registers. For better control of the data ranges,
it is possible to use the Shifter through the M-register.

rev. 1.03

08.03.00



51

4.2.2 Logic Unit

The Logic Unit is used to perform normal logical operations between its operands (X2 and
Y2), but it can aso be used to perform bit-field operations. The result of the Logic
operation is loaded to register A2. The Logic Unit instruction bits drive the circuitry
directly, so it is possible to use the unit very creatively. The schematic representation of
the Logic Unit is shown in the Figure 4.2-3. Theshi f t and mask valuesare used to
form a bitmask containing mask bits shifted left by the value of shi f t .

5 hitswide

MASK |«—<—MASK
X2 | ZERO | Y2 | [SHIFT UP<—gSHIFT

l [ e

.
0]1]2] 3
¢ vyVv'Yy

XSEL—~—1—>] MUX .
0‘7‘ 3‘7

y
YSEL —~— MUX
2 bitswide vYy

JU

0 1
XOR > MUX
0
INV > MUX
SHIFT
DSHIFT > DOWN

A2

I4_

Figure 4.2-3 Block diagram of the Logic Unit.

rev. 1.03 08.03.00



52

With the Logic Unit it is possible to produce for example the following operations:

AND Logical AND between X2 and Y2

NAND Logical NOT of AND between X2 and Y2

OR Logical OR between X2 and Y2

NOR Logical NOT of OR between X2 and Y2

XOR Logical Exclusive OR between X2 and Y2

XNOR Logical NOT of Exclusive OR between X2 and Y2
NOT Logical NOT of X2 or Y2

PASS Pass X2 or Y2 directly to output

EXTRACT Extract bit-field from X2 or Y2

BIT_TEST 1-bit version version of the above

COPYBIT Copy bit-field from Y2 to value of X2

SETBIT Set bit-field of value of X2 to ones

CLRBIT Clear bit-field of value of X2 to zeros
NEXTRACT Extract bit-field from logically negated value of X2
MASK_AND  Logical AND of bit-field of ones and value of X2 or Y2

The Logic operations also affect to the STATUS register bit 3 (see the page 63). It is
updated with the LSB (bit 0) of the Logic Unit operation’s result value. All the Logic
instructions affect to the STATUS register bit. For example, it is possible to test whether
X2 or Y2 iseven or odd using the PASS Logic operation.

4.2.3 Normalization Unit

The Normalization Unit has two functions. It has an N register which isused in AU
operations as the operand for the SHIFT instructions. The N register can be loaded from
any of the A-registers, directly viathe Immediate Load instructions or executing the
Normalize instruction. The Normalize instruction is also mentioned on page 92.

The Normalize instruction cal culates the shift value needed to normalize its operand. A
number is said to be normalized when its two most significant bits are different.

For fixed point numbers this means that a normalized number isin therange[-1; -0.5) or
[0.5; 1). The Normalize instruction receivesitsinput from the X2 register, and the output
goesto the N register. Normalization is useful in implementing block-floating-point-
operations and it can aso be used to quickly estimate the base 2 logarithm of the absolute
value of the operand.

4.2.4 Hardware Division Unit

The Hardware Division Unit implements iterative division of 24- and 32-bit numbers. The
division operation needs either 12 or 16 clock cycles, respectively, to complete depending
on the operand format. The dividend can be either positive or negative, but the divisor
must always be positive.

The Hardware Division Unit operates in parallel with the other units in the Geometry
Processor, so that the program needs not to stop to wait for the division to complete.
There is no hardware locking to prevent trying to extract the division results too early. If
this happens, the program just receives incorrect results.

rev. 1.03

08.03.00



53

Thereis aso no protection against starting a second division too soon after the first. After
the required clock cycles the division unit freezes the result so it may be extracted at any
time after the Division operation is finished, however it should be extracted before a new
oneis started. |.e. pipelining of divisonsis not supported.

Y2 X2

e A"
[ mux | [ mux |
Y Y
Dd MSB/ Dividend/
Remainder| |Quotient

i

L Divider
Core

Divider

MUX

Result
to A2

Figure 4.2-4 Block diagram of Hardware Division Unit.

The division unit shown in Figure 4.2-4, uses a non-restoring radix-4 iterative algorithm
for the divisions, and both the quotient and the remainder from the operations are
available for the programmer. The remainder is, however, not usable directly. The
programmer must perform the restoration step to get the real value of the remainder. The
restoration algorithm is described in more detail on the page 94.

4.2.5 Data Memory

The Datapath has local data memory for storing intermediate values required by the user’s
programs. There are three banks of 128 words each. The data word is 32 bitswide. The
memories are dual ported so that it is possible to either read two valuesin one cycle or
read one value and write one value. The two ports of the memories are connected in the
following way:

port1 read-only read to X-registers
port 2 read-write read to Y -registers write from A-registers

The dual port structure of the memories gives raise to a hazard in the memory operation.
If the user’s program tries to write to a memory location which is also being read at the
same time, the results of the read are unspecified. In addition, the particular memory
location in question will contain unspecified value after the operation. However, besides
of yielding unspecified results the memories cannot be physically harmed by this. For
getting better performance the hazard is left for the programmer to resolve, instead of
being handled in hardware.

rev. 1.03

08.03.00



54

4.3 Instruction Execution

The Geometry Processor instructions are formed of several fields, and the total width of
the instructionsis 32 bits. All instructions have the same width, and execute in one clock
cycle. Some operations, e.g. Divide, can take more than one clock cycle to complete, but
other instructions can be executed in parallel.

The pipeline of the Geometry Processor is visible to the programmer. This means that the
programmer should take care of the pipeline by himself / herself. The visible pipeline
enables one to write maximally efficient code but causes some overhead in the
programming work. The maximum address space for program memory is 14 bits. The on-
chip memory is 512 words divided into 4 banks that are cached from the external
memory. The location of the Geometry Processor program memory in the external
graphics memory is configured through the CODEBASE register. Writing to the
CODEBASE register from the Geometry Processor allows one to have more than one
logical address space within the external memory. This can be used to extend the effective
program memory address space beyond 14 bits (16384 words). There is no cache flush
instruction, so the programmer should take care of the cache effects. See also the page 99.

The Geometry Processor uses a classic 3-stage pipeline consisting of fetch, decode, and
execute stages. The normal execution of instructionsis shown in the table below:

Instruction Execution Stage

Instrl Fetch Decode Execute

Instr2 Fetch Decode Execute

Instr3 Fetch Decode Execute
Time -

Control transfers are implemented as delayed branches with one delay slot. This means
that the instruction following the branch instruction is executed always, not depending on
whether the jump is actually taken or not. No data moves are delayed, which means that
datatransferred by one instruction will be available for use during the next instruction.
The normal BRANCH execution is shown in the table below:

Instruction Execution Stage

Taken Branch | Fetch Decode Execute

Branch+1 Fetch Decode Execute

Target Fetch Decode Execute

Target+1 Fetch Decode Execute

Target+2 Fetch Decode Execute
Time -

There are two major branch categories: jumps and subroutine cals. It is possible to use
either unconditional or conditional branches. Conditional branches use the STATUS
register, described on the page 63, to evaluate the branch conditions. The STATUS
register contains the sign bits of all the A-registersin the Arithmetic Units, and the
BIT_TEST flag from the Logic Unit. Also the branches can be direct or indirect, in which
case the branch address is taken from the JMPREG register described on the page 62. The
block diagram of the program address calculation unit is shown in Figure 4.3-1.

rev. 1.03

08.03.00



55

Branch
Address

MUX INC

\

! JMPREG | | PC |

General Program
bus Address

Figure 4.3-1 Block diagram of Program Counter (PC).

The decision for the branch must be done in the decode stage of the branch instructions to
be able to fetch the next instruction after the delay slot instruction. Since the branch
condition which is derived from the flags is not ready until the execution stage of the
branch instruction we cannot be sure whether the branch will be taken or not.

The Geometry Processor uses speculation based on the previous value of the flags to
make an early decision of the address of the next instruction. If the prediction was
incorrect it is corrected during the next instruction cycle by canceling the decoding and
execution of the incorrectly fetched instruction. The execution of a canceled branchis
shown in the table below:

Instruction Execution Stage

Taken Branch | Fetch Decode Execute

Branch+1 Fetch Decode Execute

Target (cancel) Fetch

Branch+2 Fetch Decode Execute

Branch+3 Fetch Decode Execute
Time -

The canceling process increases the cycle count of the branch to two cycles from the
normal value of one. Since the branch prediction is done based on previous flag valuesit
is possible to optimize the code by not changing the flags on the instruction prior to the
branch instruction. This effectively introduces an extra delay slot before the branch
instruction. If the pre-branch slot cannot be filled with useful code, it can be used for
instruction affecting the flags. This causes no penalty to the execution time compared to
the case where the pre-branch instruction would be a NOP. On the other hand, it saves one
code memory word.

The Geometry Processor has no interrupts. All synchronizing to the external world must
be done by polling. Because of the nature of the Geometry Processor tasks this should
cause no problems.

rev. 1.03

08.03.00



56

When accessing data from external sources the Geometry Processor may need to wait for
the data to be ready. There are three possible sources for these wait conditions, which will
cause the Geometry Processor to enter await state.

First of these conditions arise from a cache miss. In this case the Geometry Processor
issues arequest for the Memory Manager to fill ablock of its code memory from the
cache-miss location. During the time the Memory Manager is fetching data from the
external graphics memory the Geometry Processor waits and does not process any
instructions. After the code load is complete, the Memory Manager notifies the Geometry
Processor’s Control unit, and the missed instruction is re-fetched, and normal processing
continues.

The second case for hardware wait condition can occur while issuing stream fetch
commands to the Stream I/O Unit. If the stream FIFO is empty, the Geometry Processor
will enter await state until aword is ready to be fetched from the stream FIFO. After the
walit the stream data word is fetched and normal processing resumes. Normally the Stream
1/0 Unit will try to keep the FIFO filled, but other units accessing the external graphics
memory or the user’s program changing the Stream Read address can cause a FIFO empty
condition. The Stream I/O operation is described in more detail in chapter 4.7.4.

Thethird and final wait condition arises if the user sets the Geometry Processor wai t bit
in the Synchronization register (PCl register 192).

It is also possible to completely reset the Geometry Processor independent of the other
units in the V S25203B chip by setting the Geometry Processor reset bit (ge_r eset ) in
the Synchronization PCI register. In this case all the Geometry Processor registers are set
to theinitial values, however the local data memories are not affected.

4.4 Addressing Modes

The Geometry Processor support the following Addressing modes

Register Direct

Immediate (24-bit)
Short Immediate (13-hit)
Absolute (14-hit)
1/0 Indirect (6-bit)
Absolute Data (4-bit)
Index Register Indirect (4-bit)

All the Arithmetic instructions use Register Direct Addressing mode to provide the
operands. This means that all values used by the Arithmetic Units, the Logic Unit, the
Normalization Unit, and the Hardware Division Unit need to be loaded to the AU input
registers using one of the data-move instructions prior to performing the operations. The
Geometry Processor instruction set provides several instructions for this purpose.

The Immediate 24-bit Addressing mode is used by the Long Immediate Load instruction
(IMMED) to load immediate values to the AU data registers, Stream Read address
(RDADDR), Stream Write address (WRADDR), or to the JMPREG register. The values are
interpreted as integers and are sigh extended, except for loading to the upper part of the A-
registers. In that case the values are interpreted as fixed point values and the lower 8-bits
are zero filled.

rev. 1.03

08.03.00



57

The Short Immediate 13-bit Addressing mode is used by the Short Immediate Load
instruction (SIMMED) to load immediate values to the Index registers, the N register, the
1O register address base register (REGBASE), or the busindex register (VTMB). The 13-bit
values are interpreted as integers and are sign extended.

The Absolute 14-bit Addressing mode is used for the Branch instructions to provide the
target addresses in cases where calculated jump (JMPREG) is not used. The PCI register
CODEBASE is used to give the base address for the program code in the external graphics
memory.

The I/0 Indirect Addressing mode is used to get the addresses for the external registers
used as target for the OUT instructions. The register address is calculated by addition of
the 10-bit REGBASE register and the 6-bit immediate offset from the instruction word. If
the resulting value is too large to fit to 10 hits, the 10 lowest bits of the result are used.
The 6-bit immediate address part is interpreted as an unsigned value.

The Absolute 4-bit Data Addressing mode is used to load values from the local data
memories to the Arithmetic Unit input registers. This addressing mode can only address
16 lowest addresses of the data memories, but it can be used to access these locations
independent of the values of the Index registers.

The Index Register Indirect 4-bit Addressing mode is used to load values from the local
data memories to the Arithmetic Unit input registers. This addressing mode can address
16 addresses relative to the data memories. The data address is calculated by addition of
the 7-bit Index register and the 4-bit immediate offset from the instruction word. If the
resulting value is too large to fit to 7 bits, the 7 lowest bits of the result are used. The 4-bit
immediate address part is interpreted as an unsigned value. There are 9 Index registers for
each of the possible memory read and write operations. The XRDBASE# registers are used
when reading data to the X-registers, the YRDBASE# registers are used when reading data
to the Y -registers, and the WRBASE# registers are used when writing values to the data
memories from the A-registers.

For the local data memory load and save instructions there is one special feature to
consider. In addition of specifying the source and target memories directly in the
instruction it is possible to use data driven memory indexes. This feature uses the VTIVB
register. The value of thisthree bit register isinterpreted as three bus index values (VT,
VM, VB) according to the table bel ow:

dec |Bin |[VT |VM | VB | VT | VM | VB
0 000 | O 1 2 00 |01 |10
1 001 | O 1 2 00 |01 |10*
2 010 | O 2 1 00 |10 |01
3 011 | 2 0 1 10 (00 |01
4 100 |1 0 2 01 |00 |10
5 101 |1 2 0 01 |10 |00
6 110 | O 1 2 00 |01 |10*
7 111 | 2 1 0 10 {01 | OO

*) Not possible as flags value for Derive VTMB.

It is possible then to use these bit indexes to specify from what local data memory bank to
load values to the X-registers or to which memory bank to write from the A-registers.

rev. 1.03 08.03.00



58

For exampleif the value of the VTMB register is 011 then the instruction:
X2 = VB[0], X1 = VWO], X0 = VT[O0],
VB[1] = A0, VT[1] = A1, WM1] = A2
will load X2 with value from memory bank 1, X1 with value from bank 0, and X0 with
value from bank 2. It will also write AO to bank 1, Al to bank 2, and A2 to memory bank
0.

4.5 Geometry Processor Registers

4.5.1 General

The Geometry Processor contains many internal registers. All the registers, except for the
stream related ones are set to zero when the Geometry Processor is reset either with the
global chip reset or with the special Geometry Processor reset bit, see the Synchronization
register (PCI register 192).

The registers can be divided into four classes: Arithmetic Unit registers, Stream registers,
Index registers, and the Control registers. See table below.

Registers Bits | Description
Arithmetic Unit registers
X0 32b AUOX input register
X1 32b AULX input register
X2 32b AU2X input register
Y0 32b AUQY input register
Y1 32b AULY input register
Y2 32b | AU2Y input register
RO 48b | Multiply result [x2]
R1 48b Multiply result [x2]
R2 48b Multiply result [x2]
MD 48b Shifter input
ML 48b Shifter input
M 48b Shifter input
A0 32b AUO result register
Al 32b AU result register
A2 32b AU2 result register
Stream registers
RDADDR 24b Stream Read address
VRADDR 24b Stream Write address
STREAM HI ) 32b | Streamdatahigh
STREAM LO 32b | Stream datalow
rev. 1.03 08.03.00



4.5.2 Arithmetic registers

Registers Bits | Description
Index registers
XRDBASEO 7b X bus 0 read index register
XRDBASE1 7b X bus 1 read index register
XRDBASE2 7b X bus 2 read index register
YRDBASEQ 7b Y bus 0 read index register
YRDBASE1 7b Y bus 1 read index register
YRDBASE2 7b Y bus 2 read index register
WRBASEQ 7b Write bank O index register
VWRBASE1 7b Write bank 1 index register
VRBASE2 7b Write bank 2 index register
Control registers
N 6b Shift value / Normalization value register
PC 14b Program counter
JMPREG 14b Calculated jump address register
REGBASE 10b 1O register address base register
VTMVB 6b Bus index register (special decoded 3b format)
STATUS register 4b GP'sinternal register, not same as register 48.
Register Bits Description
X0 32b AUOX input register
X1 32b AUILX input register
X2 32b AU2X input register
YO 32b AUQY input register
Y1l 32b AULY input register
Y2 32b AU2Y input register

59

The Arithmetic Unit input registers are used to provide input to the AUs. In addition the

X2 and Y2 registers are used to provide inputs to the Logic unit and the Hardware

Division Unit. The X2 register is also used as input for the Normalization unit.

The X-registers can be written to from any of the local data memory banks, the Stream
I/0O Unit or the General bus. The Y -registers can only be written to from the
corresponding local data memory bank.

Theinstruction set allows to write to all the X-registers at once with asingle value. This
combination (X012) can be used on General Move instructions, MOV E_REG instructions
and the immediate load instructions (IMMED and SIMMED).

rev. 1.03

08.03.00



60

Register Bits Description

RO 48b Multiply result [x2]
Rl 48b Multiply result [x2]
R2 48b Multiply result [x2]

The Multiply result registers are pseudo-registers. The real values and format of these
registersis not available directly to the programmer. These registers contain either the
intermediate result of the multiplication (before final addition) or the (intermediate) result
of an addition operation. These registers cannot be directly written or read, but are
accessed indirectly by the Arithmetic instructions. If written through addition operations
the R-registers are sign extended from the 32-bit result, so that the effective dataisin the
lower 32 bits of the R-registers.

Register Bits Description
MD 48b Shifter input
ML 48b Shifter input
M 48b Shifter input

The Shifter input registers cannot be directly written or read, but are accessed indirectly
by the Arithmetic instructions. These registers are used as the input for the Shifter. If
written through addition operations the M-registers are sign extended from the 32-bit
result, so that the effective dataisin the lower 32 bits of the M-registers.

Register Bits Description

A0 32b AUQ result register
Al 32b AUL1 result register
A2 32b AU2 result register

The Arithmetic Unit result registers receive the final results from any arithmetic results.
The A-registers can additionally be written through the General bus by the Immediate
Load instructions. The A2 register additionally receives input from the Logic Unit dueto
the Logic instructions or as aresult of several special instructions through the General
bus.

The valuesin the A-registers can be saturated to 8-bit values with the SATURATE
instructions, and they can be tested for equality to zero with the ZERODETECT
instruction, in which case the result of the test is written to the STATUS register.
Normally any loading of the A-registers due to arithmetic instructions causes the MSB
bits of the A-registers to be written to the STATUS register. As the data format for the
Geometry Processor is 2's complement, the MSB is oneif the datavalue is negative.

With the Immediate Load instructions there are two ways to write to the A-registers:
either to the upper 24 bits or the lower 24 bits. When writing to the lower part, the MSB
bits are sign extended to the MSB (bit 23) of the data written. When writing to the upper
part of the A-registers, the lower 8 bits are set to zero.

rev. 1.03

08.03.00



61

4.5.3 Stream registers

Register Bits Description
RDADDR 24b Stream Read address
V\RADDR 24b | Stream Write address

STREAMHI') | 32b | Stream data high
STREAM LO) | 32b Stream data low

The Stream Read address register (RDADDR) contains the address from where the next
stream dataitem will be read by the next Stream Read operation. The addressis
automatically incremented by the Stream 1/0 Unit. When writing to this register the
Stream 1/O Unit flushesits read cache.

The Stream Write address register (WRADDR) contains the address where the next stream
dataitem will be written by the next Stream Write operation. The address is automatically
incremented by the Stream 1/0 Unit. When writing to this register the Stream /O Unit
flushes its write buffer.

The stream data registers, stream data high (STREAM HI ) )and stream data low
(STREAM LO) ), contain together the 64-bit data word to be written to the stream by a
Stream Write instruction. These registers can be written to by the MOVE_REG and
Stream Write instructions.

NOTE! The Stream registers are write only and cannot be read to the buses. See also the
page 100.

4.5.4 Index registers

Register Bits Description

XRDBASEOQ 7b X bus 0 read index register
XRDBASE1 7b X bus 1 read index register
XRDBASE?2 7b X bus 2 read index register
YRDBASEOQ 7b Y bus 0 read index register
YRDBASE1 7b Y bus 1 read index register
YRDBASE?2 7b Y bus 2 read index register
VWRBASEOQ 7b Write bank O index register
VWRBASE1 7b Write bank 1 index register
VRBASE2 7b Write bank 2 index register

The RAM Read Index registers are used to allow the programmer to perform indexed
memory accesses. The value of the RDBASE registers are optionally added to any local
data RAM addresses when reading the memory.

The RAM Write Index registers are used to allow the programmer to perform indexed
memory accesses. The value of the WRBASE registers are optionally added to any local
data RAM addresses when writing the memory. The index registers are associated with
the local data memory banks with the same number i.e. XRDBASEQ is associated with the
X read port of the data RAM 0.

NOTE! The registers are write-only and cannot be read to the buses.
The instruction set allows writing to the index registersin a combined way. For each of

the groups (X, Y, Write) the 0 and 1 bus registers can be combined, and all registersin the
group can be written at once.

rev. 1.03

08.03.00



62

4.5.5 Control Registers

Register Bits Description

N 6b Shift value / Normalization value register

PC 14b Program counter

JMPREG 14b Calculated jump address register

REGBASE | 10b 10 register address base register

VTMVB 6b Busindex register (special decoded 3b format)

The N register allows computed shifts to be used. The N register can be loaded from and
stored viathe bus. It can be used with the Shifters by specifying the N register usage with
theShi ft control bitinthe A-register load operations. The N register can also be
loaded with the Normalize operation. This operation finds the number of shifts required to
normalize the number in the X2 register. (see Normalization Unit on the page 52)

The N register can be directly written and can be read viathe A2 register using the A-
register load operations.

The calculated jump address register (JMPREG) is used to allow the programmer to
perform calculated branches. The value of the JMPREG can be written from the General
bus, and then be used as the next value of the PC by using the Calculated Branch
operation in the next instructions. Note that using Cal culated Branches takes always two
instructions to complete. The JMPREG also serves as the storage for return addresses for
subrutine calls.

The JMPREG register can be directly written with the General Move instructions and can
be read viathe A2 register using the A-register |oad operations. See also Figure 4.3-1 on

page 55.

The 1O register address base register (REGBASE) contains the base address for the
register writes. The value of the REGBASE register is added to any register addresses
when performing OUT instructions.

NOTE! Thisregister iswrite only and cannot be read to the buses.

The busindex register (VTMB) is used to specify which memory bank will be written by
which A-register or which memory bank is used to read each X-register. The purposeisto
agorithmically select RAM banks for writing, and this can be used for example when
processing the vertices of atriangle currently being drawn in cases where the order of the
vertices is not known and affects the algorithm.

rev. 1.03

08.03.00



63

The VTMB register values are decoded in a special way described in the Table 4.5-1.

dec |Bin |[VT |VM | VB | VT | VM | VB
0 000 | O 1 2 00 |01 10
1 001 | O 1 2 00 |01 10*
2 010 | O 2 1 00 10 | 01
3 011 | 2 0 1 10 (00 |01
4 100 |1 0 2 01 |00 |10
5 101 |1 2 0 01 10 |00
6 110 | O 1 2 00 |01 10*
7 111 | 2 1 0 10 (01 | Q0

Table 4.5-1 Special decoded 3b format. *) Not possible as flags value for Derive
VTMB.

The VTMB register can be directly written by the General Move instructions and can read
viathe A2 register using the A-register load operations.

4.5.6 Status register

The Geometry Processor has a STATUS register which contains the arithmetic flags and a
flag describing the result of the BIT_TEST operations. Note that thisisinternal register of
the Geometry Processor and has nothing to do with the st at us PCI register 48. The
STATUS register is written into in two parts. The arithmetic operations affecting to the A-
registers load the STATUS bits into the bits 0-2 of the STATUS register, and the Logic
operations load LSB of the result into bit 3 of the STATUS register.

The STATUS register bits are alocated as follows:

3 2 1 0
normal: bit | neg2 | negl | neg0
zerodetect: | bit | zer2 zerl zer0

The STATUS register cannot be directly written and can read viathe A2 register using the
A-register load operations.

rev. 1.03

08.03.00



64

4.6 Instruction Encoding

The Geometry Processor instructions are formed from several fields, and the total width
of theinstructionsis 32 bits. All instructions have the same width, and execute in one
clock cycle. Some operations, e.g. divide, can take more than one clock cycle to complete,
but other instructions can be executed on parallel and can contain more than one parallel
operation. The encoding of the instruction wordsis presented in the table below.

The basic instruction classes are:

* Arithmetic (AU#)
* Parallel Move (LOAD, SLOAD, SAVE and LOAD_SAVE)
* Logic (LOGIC)
* General Move (MOVE_REG, IMMED and SIMMED)
* Branch (BRANCH)
* Miscellaneous:
- Out (OUT)
- Stream Write and Read (RD_STRM, WR_STRM and SWR_STRM)
- Special (SPEC)
3130 29 28 27 26 25 24/23 22 21 20 19 18 17 16/15 14 13 12 11 10 9 8/7 6 5 4 3 2 1 0
oJo o LOAD
1fo 1 LOAD_SAVE
2|1 0 o outsy] | AUG |00 SLOAD
31 0 1 AUL2 SLOAD
41 1 0 o IMMED
5/1 1010 AU
61 10 11 BRANCH
7]1 1 1 0 o ofas|rs AUG RD_STRM
81 1 1 0o o 1|mRrFrs| wmovE REGI61] RD_STRM
91 1 1 0 1 ofA2|m AUG A0 SLOAD
of1 1 1 0 1 1]A2{AL AUG A0 SAVE
11 1 1 1 0o of sEw0 AU12 [as|  seeciez | ouT
2111101 0 0 AUG | SIMMED
Bf1 11101 0 1 AUL2 As|  seecie2 | sewo| WR STRM
4111101 1 0 AUL2 AS MOVE REG WS
Bsl1 11101 1 1 AU_14[0+1+2] [og] ouT
61 11110 0 0 MOVE_REG LOGIC
7f1 11110 0 1 MOVE _REG SLOAD
81 11110 1 0 WR_STRM SLOAD
of1 11110 1 1 SPEC SLOAD
201 11111 0 0 SPEC SAVE
111111 0 1 reserved
111111 1 O reserved
111111 1 1 reserved
313029 28 27 26 25 24|23 22 21 20 19 18 17 1615 14 13 12 11 10 9 87 6 5 4 3 2 1 0

The identification numbers on the first column in the table above are referred to on the
more detailed tables to be presented on the next few chapters.

rev. 1.03 08.03.00



65

4.6.1 Arithmetic instructions

31 30 29 28 27 26 25 24[23 22 21 20 19 18 17 16]15 14 13 12 11 10 9 8|7 6 5 4 3 2 1 O
AU 5 | ALoaD2 AU_OP2 R LOAD2 [ML2  JAU oro1 sH| A Lbol | R LDO1 [MLO1
AU_14[0+1+2] 15 [A2] A1] AU OP RLOAD |[ML |A LoAD 14 [sH|Ao|
AUL2 3 | RLoaD | A12 o [T12] AU OP SH|
AU12[2/012] 11,13, 14 H[T12] AU OP R LOAD | A12 oP [AS|
AU6 2,12 T6] A6 OP R6
AUB[0+1+2] 9,10 A2[a1]Te] A6 OP Rre[ A0|
AU6[2/012] 7 As| [1e] A6 oOP R6

The numbersin the first column refer to rows in the table on page 64.

Full Arithmetic instructions specify different operations for AUs0/1 and AU 2. They
consist of AU opcode, A-load, M-load and R-load parts. See AU row on table above.

Full Arithmetic instructions for single AUs specify same operations for al the AUs. They
consist of AU opcode, A-load, M-load and R-load parts. Seerow AU_14.

Short Arithmetic instructions specify the same A-load, M-load, and R-load operations for
all the AUs. The M-load is a shortened version of the full M-load. See row AU12.

6-bit Arithmetic instructions are the shortest version of the AU instructions. They do not
allow the most exotic possibilities of the AUs, and all the AUs execute the same
operations. Also the whole instructions is coded together in a 6-bit operation word. See
row AUG.

NOTES:

* |t ispossible to specify in A_LOAD and M_LOAD either AU output or R-register as
input. If the selection is not the same for both of the cases, or if one of them is not aNOP,
the result is unspecified.

* |t is possible to specify the A/Y selection in both AU_OP and R_LOAD. If the selection
is not the same for both, or if one of them is not a NOP, the result is unspecified.

* For 6-bit AU, mode O operations, note that the Multiplication multiplies the
corresponding AU operation operands.

rev. 1.03 08.03.00



66

Field descriptions:

AS
Selecting between AU*[2/012] is done using the AS select hit.

Dec | Bin | Operation
0 0 Use only AU2 for the operation

1 1 Use all the AUs for the operation

A0, Al, A2

When selecting individual AUsto perform the AU operationsthe AO, A1, and A2 hits are
used.

Dec | Bin | Operation

0 0 Do not use this AU for any operations

1 1 Use this AUs for the operation

SH

SHIFT select (N_reg/0)

Dec | Bin | Operation
0 0 No SHIFT
1 1 Use N register for shifting

4.6.1.1 Arithmetic Unit opcode
Thisfield selects the operation of the adder in the Arithmetic Unit.

AU_OP, AU_OP2, AU_OP01

Dec | Bin Operation
0 0000 NOP
1 0001 X+A
2 0010 X-A
3 0011 | -X+A
4 0100 X+Y
5 0101 X-Y
6 0110 | -X+Y
7 0111 A
8 1000 | -A
9 1001 X
10 1010 | -X
11 1011 Y
12 1100 | -Y
13 1101 0
14 1110 inc(A)
15 1111 dec(A)

rev. 1.03 08.03.00



4.6.1.2 A-load
These fields select the source of datato be loaded into the A-register.

A_LOAD2
Select source for loading the A2 register.

Dec | Bin Operation

0 00000 NOP

1 00001 AU result

2 00010 |74

3 00011 hi(R2)

4 00100 lo(R2)

5 00101 Saturate 8b signed
6 00110 Saturate 8b unsigned
7 00111 |-M-ML

8 01000 M

9 01001 ML

10 01010 M

11 01011 MD- ML

12 01100 MD- MR

13 01101 ML- M2

14 01110 MD+ML+M2
15 01111 | - MO- ML+M2
16 10000 | -M2

17 10001 | -M

18 10010 | -M

19 10011 M) +ML

20 10100 | - MO+ML

21 10101 MD+MR

22 10110 | - MO+M2

23 10111 ML+M2

24 11000 | - ML+M2

25 11001 | - M- M2

26 11010 |-MO-M2

27 11011 MD- ML+M2
28 11100 M) +ML- M2
29 11101 | - MO+ML+M2
30 11110 MD- ML- M2
31 11111 | - MD+ML- M2

rev. 1.03 08.03.00



68

A_LOAD_14
Select source for loading to A-registers with AU_14 instruction.

Dec | Bin Operation Note
0 0000 NOP

1 0001 AU result

2 0010 M

3 0011 hi(R)

4 0100 lo(R)

5 0101 Saturate 8b signed

6 0110 Saturate 8b unsigned

7 0111 | -M-M (2)
8 1000 e

9 1001 ML 2
10 1010 MD 2
11 1011 MD- ML 2
12 1100 MD- M2 2
13 1101 ML- M2 2
14 1110 MD+ML+M2 2
15 1111 | - MD- ML+MR 2

(2) This operation is available only on the AU2. For other AU’sitisa NOP.

A_LOADO1
Select source for loading to A0 and Al registers.

101 | Saturate 8b signed
110 | Saturate 8b unsigned
111 reserved

Dec | Bin Operation
0 000 NOP
1 001 | AU result
2 010 M
3 011 hi(R)
4 100 lo(R)
5
6
7

4.6.1.3 M-load
These fields select the source for loading into the M-registers.

M_LOAD, M2_LOAD, M01_LOAD

Dec | Bin | Operation
0 00 NOP

1 01 AU result
2 10 R
3 11 reserved

rev. 1.03 08.03.00



69

4.6.1.4 R-load
These fields specify the source to be loaded into the R-registers. They a so specify the
multiplication operation.
R_LOAD, R_LOAD2, R_LOADO1
Dec | Bin Operation Notes
0 000 | NOP
1 001 | AU result
2 010 | hi(XxA) Multiply higher 24-bits of the operands
3 011 | hi(XxY) Multiply higher 24-bits of the operands
4 100 | lo(XxA) Multiply lower 24-bits of the operands
5 101 | lo(XxY) Multiply lower 24-bits of the operands
6 110 reserved
7 111 reserved
4.6.1.5 AU12

Special fields for the 12-hit Arithmetic instructions.

T12
Thisfield specifies the mode of the AU12 instruction.

Dec | Bin | Operation
0 0 AU12 mode 0: A=AU/R; R=R_LOAD
1 1 AU12 mode 1: A=func(MD, ML, M2); M=R; R=R LOAD

Al2_OP
Thisfield specifies the operation to be performed by the AU12 instruction.

AU12 mode O:

Dec | Bin Operation
0 000 | NOP

001 AU result
010 M

011 hi(R)

100 lo(R)

101 | Saturate 8b signed
110 | Saturate 8b unsigned
111 reserved

~NO U~ WNPE

rev. 1.03 08.03.00



70

AU12 mode 1:

Dec | Bin Operation Note
000
001
010
011
100
101
110 +M2 2
111 @)
(2) This operation is available only on the AU2. For other AU’sitisa NOP.

@)
@)
ML 2
-\ )
M
ML

()

~NoO oM~ WNEO
TITEEEE R
SEsss8®

5
=
n
S

4.6.1.6 6-bit AU operations (AU6)
Special fields for the 6-bit Arithmetic instructions. A0, A1 and A2 are described earlier.

T6

Thisfield specifies the operation to be performed by the AUG instruction.

AUG mode select:

Dec | Bin | Operation

0 0 Mode 0: A=misc; R=MUL

1 1 Mode 1: A=vect/M; M=R; R=MUL

A6_OP

AUG operation code, field specifying the operation to be performed by the AU6

instruction.

Mode O: (A=misc; R=MUL)

Bit(s) Function

30 A-load:
Dec | Bin Operation Note
0 0000 | NOP no R-load
1 0001 A=X+A R=X x A
2 0010 | A=X+Y R=X xY
3 0011 | A=X-Y R=X xY
4 0100 | A=-X+Y R=X xY
5 0101 | A=X R=X xY
6 0110 | A=-X R=X xY
7 0111 | A=Y R=X xY
8 1000 | A=-Y R=X xY
9 1001 | A=0 R=X xY
10 1010 reserved
11 1011 | A=inc(A) R=X x A
12 1100 | A=dec(A) R=X x A
13 1101 | A=hi(R) R=X xY
14 1110 | A=lo(R) R=X xY
15 1111 reserved

rev. 1.03 08.03.00



71

Mode 1: (A=vect/M; M=R; R=MUL)
Bit(s) Function
3-1 A-load (MUL = X x Y):
Dec | Bin Operation Note
0 000 | A=M
1 001 | A=ML 2
2 010 | A=MD 2
3 011 | A=MD- ML @)
4 100 | A=MD- M2 2
5 101 | A=ML- M2 @)
6 110 | A=MD+ML+M2 @)
7 111 | A=- MD- ML+MR (2)
(2) This operation is available only on the AU2. For other AU’sitisa
NOP.
0 SHIFT select (N_reg/0):
Dec | Bin | Operation
0 0 No SHIFT
1 1 Use Nregister for shifting
R6
AUG6 R-load operation
Dec | Bin | Operation Notes
0 0 R=lo(MUL) Multiply lower 24-bits of the operands
1 1 R=hi(MUL) Multiply higher 24-bits of the operands

NOTE! A/Y selection for multiplication is based on the A-load or Y if not otherwise
specified.

rev. 1.03 08.03.00



72

4.6.2 Parallel Move instructions

These instructions provide means for moving data between local data RAM and the AU registers.

4.6.2.1 Load instructions

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16‘15 14 13 12 11 10 9 8| 7

6 5 4 3 2 1 0

LOAD 0 0 o] X-sd

1] X01-addr

| Y 01-addr

Y-

X2-addr

Y 2-addr

SLOAD 2,3917,18,19

[ xss [xi

Y-sd

X-adar

Y -addr

The numbers 0 for LOAD and 2, 3, 9, 17, 18 and 19 for SLOAD refer to rowsin the table on page

64.

4.6.2.1.1 Full load (LOAD)

XI
Bit(s) Function
0 R-register indexed load select
0 = fixed buses
1 =indexed buses (VT,VM,VB)
X-Sel
Bit(s) Function
54 X2 source select:
XI 0 1
Xsel
00 NOP NOP
01 BO VT
10 Bl VM
11 B2 VB
32 X1 source select:
XI 0 1
Xsel
00 NOP NOP
01 BO VT
10 Bl VM
11 B2 VB
1-0 X0 source select:
XI 0 1
Xsel
00 NOP NOP
01 BO VT
10 Bl VM
11 B2 VB

rev. 1.03

08.03.00




73

Y-sel
Bit(s) Function
2 Y 2 source select

0- NOP

1 - Load from associated bus (B2->Y 2)
1 Y 1 source select

0- NOP

1 - Load from associated bus (B1->Y1)
0 Y 0 source select

0- NOP

1 - Load from associated bus (BO->Y0)
X01-addr

Thisfield specify the addresses to be used in the X-port of the data memories 0 and 1.

Bit(s) Function

4 X0,X1 index register select
0=Don't use index register (accessing addresses 0-15)
1=Use index register for memory address generation
X0 uses XRDBASEQ, X1 uses XRDBASE1

3-0 Memory address for X0 and X1 moves

X2-addr

Thisfield specifies the address to be used in the X-port of the data memory 2.

Bit(s) Function

4 X2 index register select
0=Don't use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Uses XRDBASE2.

3-0 Memory address for X2 move

rev. 1.03

08.03.00



74

YO01-addr

Thisfield specify the addresses to be used in the Y -port of the data memories 0 and 1.
Bit(s) Function

4 Y0,Y 1 index register select

0=Don't use index register (accessing addresses 0-15)
1=Useindex register for memory address generation
Y0 uses YRDBASEDQ, Y 1 uses YRDBASE1

30 Memory address for YO and Y 1 moves

Y2-addr

Thisfield specifies the address to be used in the Y -port of the data memory 2.
Bit(s) Function

4 2 index register select

0=Don't use index register (accessing addresses 0-15)
1=Useindex register for memory address generation

Uses YRDBASE2.
30 Memory address for Y 2 move
4.6.2.1.2 Short LOAD(SLOAD)
XI
Bit(s) Function
0 X bus indexed mode select

0 =Mode 0, fixed buses
1= Mode 1, indexed buses (VT,VM,VB)

We have two distinct cases for the XS-sel field depending on the
indexed mode select value:

rev. 1.03 08.03.00



75

XS-sel
X-register source select.
Mode O - direct:
Bit(s) Function
2 X2 select
0-NOP
1 - Load from associated bus (B2->X2)
1 X1 select
0-NOP
1- Load from associated bus (B1->X1)
0 X0 select
0-NOP

1 - Load from associated bus (B0O->X0)

Mode 1 - indexed buses:

Bit(s) Function
2 X2 select

0- NOP

1-Load fromVT bus (B[VT]->X2)
1 X1 select

0- NOP

1-Load fromVM bus (B[VM]->X1)
0 X0 select

0- NOP

1-Load fromVB bus (B[VB]->XO0)
X-addr

Thisfield specifies the address to be used in the X-port of the data memories.

Bit(s) Function
4 X0,X1,X2 index register select

0=Don't use index register (accessing addresses 0-15)

1=Use index register for memory address generation

X0 uses XRDBASEOQ, X1 uses XRDBASEL, X2 uses XRDBASE2
3-0 Memory address for X0 and X1 moves

rev. 1.03

08.03.00



76

Y-addr
Thisfield specifies the address to be used in the Y -port of the data memories.

Bit(s) Function

4 Y0,Y1,Y2 index register select
0=Don't use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Y0 uses YRDBASED, Y 1 uses YRDBASEL, X2 uses YRDBASE?2

30 Memory address for YO and Y 1 moves

4.6.2.2 SAVE
31 30 29 28 27 26 25 24|23 22 21 20 19 18 17 16]15 14 13 12 11 10 9 8]7 6 5 4 3 2 1 0

LOAD_SAVE 1 Jo 1] A-sdl Al X01-addr | WOL-addr | Xw-s X2-addr W2-addr
SAVE 10,2 | A [ Al WO1-addr W2-addr
4.6.2.2.1 SAVE

Al

Bit(s) Function

0 A-register indexed mode select

0= Mode 0, fixed buses
1=Mode 1, indexed buses (VT,VM,VB)

We have two distinct cases for the A-sel field depending on the
indexed mode select value:

rev. 1.03 08.03.00



A-sel
Select which A-register drives which write port of the data memories.

Mode O - direct:
Field Bits | Notes
B2-driver | 2b
Bl-driver | 2b
BO-driver | 2b
A-sel 6b Total
Bit(s) Function
5-4 B2-driver:
Dec | Bin | Operation
0 00 NOP
1 01 AO drivesthe bus
2 10 Al drivesthe bus
3 11 A2 drivesthe bus
3-2 Bi-driver:
Dec | Bin | Operation
0 00 NOP
1 01 AO drivesthe bus
2 10 Al drivesthe bus
3 11 A2 drivesthe bus
1-0 BO-driver:
Dec | Bin | Operation
0 00 NOP
1 01 A0 drivesthe bus
2 10 Al drivesthe bus
3 11 A2 drivesthe bus

rev. 1.03 08.03.00



78

Mode 1 - indexed:

Field

Busindex select
Write enable

A-sel

Bit(s)

Bits | Notes

3b

3b

6b Total
Function

5-3

Busindex select:

idx. | VT | VM | VB

000 | AO Al A2
o001 | AO A2 Al
010 | A1 A0 A2
o011 | Al A2 A0
100 | A2 Al A0
101 | A2 A0 Al
110 | A2 A2 Al
111 | Al A2 A2

1

0

Wo01l-addr

Thisfield specifies the address to be used in the write port of data memories 0 and 1.

Bit(s)

Writeto the VT bus
Write to the VM bus

Write to the VB bus

Function

4

3-0

W2-addr

Bus 0 and 1 index register select

0=Don't use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Bus 0 uses WRBASEQ, bus 1 uses WRBASE1

Memory address for bus 0 and 1 moves

Thisfield specifies the address to be used in the write port of data memory 2.

Bit(s)

Function

4

3-0

Bus 2 index register select

0=Don't use index register (accessing addresses 0-15)
1=Use index register for memory address generation
Uses WRBASE2.

Memory address for bus 2 move

rev. 1.03

08.03.00



79

4.6.2.2.2 Combined LOAD and SAVE (LOAD_SAVE)

XW-sel
X-register source select.
Bit(s) Function
2 X2 select

0- NOP

1 - Load from associated bus (B2->X2)
1 X1 select

0-NOP

1 - Load from associated bus (B1->X1)
0 X0 select

0- NOP

1 - Load from associated bus (B0->X0)

Other fields as specified in previousinstructions.

rev. 1.03

08.03.00



80

4.6.3 Logic instructions

LOGIC

Logic instructions are implemented by driving directly the control signals for the Logic
Unit. See chapter Logic Unit on page 51 for more information on the Logic Unit
implementation.

These are performed by the Logic unit, and include al normal two and one operand logic
functions, bit-field extraction and copying operations, and bit-test and set operations. The
result of the Logic operationsis put into the A2 register.

The SETBIT operation sets bits of the value read from the X2 register. The CLRBIT
operation clears hits of the value read from the X2 register. The bits to be set or cleared
are indicated by the value of the shi ft field. The COPYBIT operation copies a hit-field
from the Y2 register into the value of X2 register. The field in the Y2 register starts from
the value indicated by the shi f t valueand ismask bitslong. The field in the X2 register
that isto be copied into is at the same location.

31

30

16

20 28 27 26 25 24/23 22 21 20 19 18 17 16/15 14 13 12 11 10 9 8]7 6 5 4 3 2 1 0
| LOGIC_OP | SHIFT | MASK

Bit(s) Function

16 DSHIFT

0 = no shift, 1 = shift down by shi ft .

15 INV
0 =don't invert, 1 = invert data.

14 XOR
0=X OR Y,1=X XOR Y

13:12 YSEL

Dec | Bin | Operation

0 00 Y =Y2

1 01 Y=0

2 10 Y =Y2 AND bitmask
3 11 Y = NOT (bitmask)

11:10 XSEL

Dec | Bin | Operation

0 00 X=X2 AND Y2

1 01 X=0

2 10 X =X2 AND NOT (bitmask)
3 11 X = X2 AND bitmask

9-5 SHIFT
Bitsto shift for EXTRACT (5 bits-> 0-31 down).

4-0 MASK
Number of bitsto mask (5 bits -> 0-31 bits).

rev. 1.03

08.03.00



81

Examples of the useful Logic instructions are presented in the table below, see schematic
for more exotic operations. The first three single bin bits present, in the order, DSHIFT,
INV and XOR. The next two bin bit series present the Y SEL and XSEL.

Bin Operation Notes
0000100 AND
0100100 NAND
0000010 OR
0100010 NOR
0010010 XOR
0110010 XNOR
0100110 NOT X
0100011 NOT Y
0000110 PASS X (mask must be 0)
0000011 PASSY
1000111 EXTRACT X
1000111 BIT_TEST X
1001001 EXTRACT Y
1001001 BIT_TESTY
0001010 COPYBIT(X,Y)
0001110 SETBIT(X)
0000110 CLRBIT(X)
0011111 NEXTRACT EXTRACT (not X)
0000111 MASK_AND X
0001001 MASK_AND Y
rev. 1.03 08.03.00




82

4.6.4 General Move instructions

General Move instructions are responsible for moving data other ways than what is
possible using the Parallel Moveinstructions, i.e. not between AU registers and the data
memory.

With these operationsiit is possible to store or load any register in the Geometry Processor
(accessible from the buses) to from any other register or memory, and load any register
with animmediate data. It is also possible to move data from the A-registers to the stream
memory with these operations. The special registers can be loaded from the A-registers
using these operations. The amount of datato be moved in one operation is limited with
these operations.

NOTE! If aNormalize operation (NORM) is performed at the same time than a move to
the N register, the N register will be written with the results of the NORM operation, and
NOT the value which was moved.

4.6.4.1 Move from A-registers to other GP registers

NOTE: If using MOVE_REG together with RD_STRM, and using the X-register targets
in register move, the result is unspecified. For the NOP the MOVE_REG fields SRC and
REG_DST must both be zeros.

31302928272625242322212019181716‘1514131211109 8‘7 6 5 4 3 2 1 0

MOVE_REG 8 0| REG DST |
MOVE_REG 14 [si|s0]  REG DsT
MOVE_REG 16,17 [s0] Rrecpst  Tsi]
SRC [S1,S0]
Dec | Bin | Operation
0 00 NOP
1 01 A0
2 10 | Al
3 11 A2
rev. 1.03 08.03.00



83

REG_DST
Dec | Bin Operation Notes
0 00000 | NOP
1 00001 | AO
2 00010 | Al
3 00011 | A2
4 00100 | RDADDR Stream Read address, 24b
5 00101 | WRADDR Stream Write address, 24b
6 00110 | JMPREG
7 00111 | X012 Writesto all X-registers.
8 01000 | XO
9 01001 | X1
10 01010 | X2
11 01011 | XRDBASEO
12 01100 | XRDBASE1
13 01101 | XRDBASE2
14 01110 | XRDBASEO1 Writes to XRDBASEO and XRDBASE1
15 01111 | XRDBASEO12 | Writesto all the XRDBASES
16 10000 | YRDBASEO
17 10001 | YRDBASE1
18 10010 | YRDBASE2
19 10011 | YRDBASEO1L Writesto YRDBASEGInd YRDBASE1
20 10100 | YRDBASEOQO12 | Writesto all the YRDBASES
21 10101 | WRBASEO
22 10110 | WRBASE1
23 10111 | WRBASE?2
24 11000 | WRBASEO1 Writesto WRBASEGNd WRBASE1
25 11001 | WRBASEO012 Writes to all the WRBASES
26 11010 | N
27 11011 REGBASE
28 11100 | VTMB Special decoded 3b format, see table below.
29 | 11101 | STREAM(HI) | Stream datahigh
30 | 11110 | STREAM(LO) | Stream datalow
31 11111 | reserved
rev. 1.03 08.03.00



84

4.6.4.2 Immediate data loads

Immediate L oads move constant data specified in the instruction to Geometry Processor

registers.
31 30 29 28 27 26 25 24]23 22 21 20 19 18 17 16]15 14 13 12 11 10 9 8]7 6 5 4 3 2 1 0
IMMED 4 |REG_LONG IMMED-data 24
SIMMED 12 | REG sHORT | IMMED-data 13

4.6.4.2.1 IMMED

This specifies the Long Immediate Load instruction source and destination.

IMMED-data24

IMMED-data24 is a signed 24-bit data word, which is sign extended for longer registers,
and truncated from upper bits for shorter registers.

REG LONG:

Dec | Bin Operation Notes

0 0000 NOP

1 0001 AO0_lower 32b

2 0010 Al _lower 32b

3 0011 A2_lower 32b

4 0100 RDADDR Stream Read address, 24b
5 0101 VWRADDR Stream Write address, 24b
6 0110 JMPREG 14b

7 0111 X012 Writesto all X-registers.
8 1000 X0 32b (load lower 24b)

9 1001 X1 32b (load lower 24b)

10 1010 X2 32b (load lower 24b)

11 1011 AO_upper 32b

12 1100 Al_upper 32b

13 1101 A2_upper 32b

14 1110 reserved

15 1111 reserved

rev. 1.03

08.03.00




4.6.4.2.2 SIMMED

This specifies the source and destination for the Short Immediate Load instruction.

IMMED-datal3

85

IMMED-datal3 is a signed 13-bit data word, which is sign extended for longer registers,
and truncated from upper bits for shorter registers.

REG SHORT:

Dec | Bin Operation Notes

0 00000 | NOP

1 00001 | reserved

2 00010 | reserved

3 00011 | reserved

4 00100 | reserved

5 00101 | reserved

6 00110 | reserved

7 00111 | reserved

8 01000 | reserved

9 01001 | reserved

10 01010 | reserved

11 01011 | XRDBASEO

12 01100 | XRDBASE1

13 01101 | XRDBASE2

14 01110 | XRDBASEO1 Writes to XRDBASEO and XRDBASE1
15 01111 | XRDBASEQ12 | Writesto all the XRDBASES

16 10000 YRDBASEO

17 10001 | YRDBASE1

18 10010 | YRDBASE2

19 10011 | YRDBASEO1L Writes to YRDBASEO and YRDBASE1
20 10100 | reserved

21 10101 | VWRBASEQ

22 10110 | WRBASE1

23 10111 | WRBASE2

24 11000 | WRBASEO1 Writes to WRBASEO and WRBASE1
25 11001 | WRBASEO12 Writesto all the WRBASES

26 11010 | N

27 11011 | REGBASE 1O register address base register

28 11100 | VIMB Special decoded 3b format, see table below.
29 11101 | reserved

30 11110 | reserved

31 11111 | reserved

VTMB register bit encoding:

dec | bin | VT |VM |VB | VT | VM | VB
0 000 | O 1 2 00 |01 10
1 001 | O 1 2 00 |01 10
2 010 | O 2 1 00 10 | 01
3 011 | 2 0 1 10 |00 |01
4 100 | 1 0 2 01 |00 |10
5 101 |1 2 0 01 10 | 00
6 110 | O 1 2 00 |01 10
7 111 | 2 1 0 10 (01 |00

rev. 1.03

08.03.00



86

4.6.5 Branch instructions

There are two major Branch categories: Jumps and Subroutine Calls. It is possible to use
either unconditional or conditional branches. Conditional branches use the STATUS
register to evaluate the branch conditions. The STATUS register contains the sign bits of
al the A-registersin the AUs, and the BIT_TEST flag from the Logic Unit. Also the
branches can be direct or indirect, in which case the branch address is taken from the
JMPREG register. All the branches are delayed.

When doing a CALL operation, the return addressis saved into the JMPREG. The return
address will be 2 + the address of the CALL, because of the delayed branching. The next
instruction following the CALL operation is executed before executing the first
instruction of the subroutine. Doing more than one CALL operation after each other
without a corresponding return operation between them will overwrite the contents of the
JMPREG, and returns after the first one to transfer the control to the same location. It is
possible to save the value of the JMPREGto do multilevel CALLSs. Inthiscaseit ison the
programmer’s responsibility to save and restore the correct values from and into the
JMPREG

The JUMP condition is evaluated in the following way:

cal c_mask = (status ” inv_nmask) | ~use_nmsk; /* create mask */
if (inv_cond == 1) {

do_junp = @&cal c_mask; /* bitwise NAND reduction
*/
} else {

do_junp = @cal c_mask; /* bitwise AND reduction */
}

wherethe AND reduce function ANDs all the bitsfromthe cal c_mask together
producing asingle value.

For programming the following special cases may be useful:

JUMPaways. use_nask = 0000
inv_cond =0

JUMP never: use_mask = 0000
inv_cond =1

Examples:

JUMP N2: use_mask = 0100
i nv_mask = 0000
inv_cond =0

JUMP not(N2): use_nmask = 0100
i nv_mask = 0100
inv_cond =0

JUMPN2& N1: use_mask = 0110
i nv_mask = 0000
inv_cond =0

rev. 1.03 08.03.00



87

JUMP not(N2) & not(N1):

use _mask = 0110
inv_mask = 0110
inv_cond =0
JUMPN2|N1: use_mask = 0110
inv_mask = 0110
inv_cond =1
JUMP not(N2) | not(N1):
use _mask = 0110
i nv_mask = 0000
inv_cond =1

Program address space:

Maximum address space for program memory is 14 bits. The on chip memory is 512
words divided into 4 banks that are cached from the out of chip memory (zero addressis
set by CODEBASE). Writing to the CODEBASE register from the Geometry Prosessor
allows one to have more that one logical address space within the external memory. This
can be used to extend the effective program memory beyond 14 bits (16384 words). See
also the page 54.

Using the Precache instruction:

Thereis an Aladvice bit within the branch instruction. The advice bit tells that thisis not a
real branch to be taken, but it advices the cache system to pre-load the cache contents for
aforthcoming branch instruction, to save a cache miss. This feature can be used to greatly
reduce the amount of time spent in waiting instruction memory cache updates. Only valid
information for advice type branch is the immediate address.

Hint: Since the return from the subroutine takes the return address from the JMPREG, it is
possible to perform non-conditional calculated jumps by using the RETURN operation.

rev. 1.03

08.03.00



88

31 30 29 28 27 26 25 24

2322212019181716‘1514131211109 8/ 7 6 5 4 3 2 1 0

BRANCH | AJTYPE |ICJUsE MASK  |INV.MASK | X] BRANCH-addr
Bit(s) Function
26 A
Advice bit:
0 = Normal branch instruction.
1 = Precache instruction, do not branch.
25-24 TYPE
Branch type
Dec | Bin | Operation
0 00 immediate jump
1 01 calculated jump
2 10 immediate call
3 11 calculated call
23 IC (INV_COND)
Invert condition, invert evaluated branch condition meaning. See before
for description of usage.
22-19 USE_MASK
Condition code usage mask. See before for description of usage.
18-15 INV_MASK
Condition code negation mask. See before for description of usage.
14 reserved
13-0 BRANCH-address
Not used for calculated (JMPREG) branches.
rev. 1.03 08.03.00



4.6.6 Miscellaneous instructions

4.6.6.1 OUT instruction

89

These instructions include all the rest of the instruction that was not included into the
previous classes. These are OUT, Stream Write, Stream Read and Special instructions.

IO register address space is 10 bits, and the address of the register to be writtentois
formed always by adding the current value of REGBASE to the address supplied in the
instruction. See aso chapter 4.7.2.

Thereis one specia case (type 15) where the OUT operation is conditional to the state of
the OS hit in the out instruction. In all other casesif the OUT operation is part of the

instruction it will be done with no regards to the OUT address.

3130292827262524‘2322212019181716‘1514131211109 8‘7 6 5 4 3 2 1 0

ouT 15 OUT-addr
ouT 11 OUT-addr
ouT 2 [oursy ] [oo]

NOTE! Register writes can be performed only from A2 register.

oS

Dec | Bin | Operation

0 0 Don't do any OUT operations

1 1 Do the specified OUT operation
rev. 1.03 08.03.00



90

4.6.6.2 Stream Write and Stream Read

RD_STRM
WR_STRM
WR_STRM
SWR_STRM

These instructions read and write data from/to the stream. See also chapter 4.7.4.

31 30 29 28 27 26 25 24

23 22 21 20 19 18 17 16|15 14 13 12 11 10 9 8‘7 6 5 4 3 2 1 0

8,7 FS [Fx2 | x2 mode [F X1 | Xi-mode |F X0 | X0mode

13 RC [ sF[ws
18

14 [w

4.6.6.2.1 Stream Write WR_STRM and SWR_STRM)

This instruction writes 32 bits of data to the Stream registers (STREAM HI ) and
STREAM LO) ) and possibly initiates awrite to the external graphics memory.

SRC

Source register

Dec | Bin | Operation

0 00 NOP

1 01 A0

2 10 Al

3 11 A2

SF

Data format

Dec | Bin | Operation

0 0 lower 32-bit

1 1 upper 32-hit

WS

Do write

Dec | Bin | Operation

0 0 Don't write stream data out
1 1 Write stream data out

4.6.6.2.2 Stream Read (RD_STRM)

The stream data is stored into a stream fetch register which is a 64-bit register. The stream
fetch register is visible through the Stream Read instruction. The fetch register can be read
in various formats. The general view isillustrated below:

63
716|/5]4]3]2]1]0
3 2 1 0

1 0
|| 24b 0

byte (8 bits)
short (16 bits)
int (32 bits)
misc

rev. 1.03

08.03.00



91

NOTE: If using MOV E_REG together with RD_STRM, and using the X-register targets
in register move, the result is unspecified.

Bit(s) Function

24 FS
Fetch Stream. Fetch new data to the stream fetch register after reading
this value.

23-18 <Unused for RD_STRM>

17-16 F X2

Dataformat for X2 read

Dec | Bin | Operation
0 00 signed

1 01 unsigned

2 10 fixed

3 11 special
15-12 X2-mode

Mode for X2 read

Dec | Bin Numeric | Special

0 0000 | NOP NOP

1 0001 | 24b status 1

2 0010 |intl status O

3 0011 | intO

4 0100 | short3

5 0101 | short2

6 0110 | shortl

7 0111 | shortO

8 1000 | byte7 8-bit mult by 16 (1)
9 1001 | byte6 8-bit mult by 8 (1)

10 1010 | byte5 8-bit mult by 4 (1)

11 1011 | byte4 8-bit mult by 2 (1)

12 1100 | byte3 float conv -> integer (bits 63-32)
13 1101 | byte2 float conv -> integer (bits 31-0)
14 1110 | bytel float conv -> fixed (bits 63-32)
15 1111 | byteO float conv -> fixed (bits 31-0)

11-10 F X1
Dataformat for X1 read, bit assignments equal to F_X2.

9-6 X1-mode
Bit assignments equal to X2-mode.

5-4 F_X0
Data format for X0 read, bit assignments equal to F_X2.

3-0 X0-mode
Bit assignments equal to X2-mode.

rev. 1.03 08.03.00



92

4.6.6.3 Special instructions

SPEC
SPEC
SPEC

This set of operations perform a specialized set of instructions. These include return from
subroutine, absolute value compare, etc. The common thing with these operations is that
they perform a not very often needed functionality which is done with special functional
blocks and does not need any parameters to execute.

31302928272625242322212019181716‘1514131211109 8‘7 6 5 4 3 2 1 0

19,20

13

11

SPEC |

SPEC[6:2] SPE10

SPE10 SPEC[6:2]

4.6.6.3.1 RETURN instruction

The RETURN instruction returns from a subroutine previously entered with a CALL
operation. The PCisrestored from the JMPREG, and the next instruction fetched will be
theinstruction that is at address 2 + CALL address (because of the delayed branching).
The next instruction following the RETURN operation is executed before returning to the
main program. Since the return from the subroutine takes the return address from the
JMPREG it is possible to perform non-conditional calculated jumps by using the
RETURN operation. See also Figure 4.3-1 on page 55.

4.6.6.3.2 Normalize instruction

The Normalize instruction (NORM) takes the number to normalize from the X2 register
and the normalization shift amount will be placed in the N register such that it is easy to
perform the actual normalization step by just shifting the number by the value of N
register.

4.6.6.3.3 Derive VTMB instruction

The Derive VTMB instruction performs the bus index sort operation required in the
triangle draw algorithm. It reads the STATUS register and uses that to calculate the value
for the internal VTIVB register. The instruction causes the index of the largest value to be
written into the VT-part, the index of the middle item into the VM-part and the index of
the smallest into the VB-part of the register. The instruction is explained in the table
below:

b0<bl | bi<b2 | b0<b2 | top | mid | bot order
0 0 0 bO | bl | b2 | bO>=bl>=b2
0 0 1 - - - N/A
0 1 0 bO | b2 | bl | bo>=b2>bl
0 1 1 b2 | bo b b2>b0>=h1
1 0 0 bl | b0 | b2 | bil>b0o>=h2
1 0 1 bl | b2 | b0 | bil>=b2>b0
1 1 0 - - - N/A
1 1 1 b2 | bl | bo b2>b1>b0

AU2 AUl AUO

rev. 1.03

08.03.00




93

Where the values b0, b1, and b2 correspond to indices 0, 1, and 2 correspondigly. The
correct instruction sequenceis.

x2 = bl[ty], x1 = b2[ty], x0 = b2[ty] !
a =
x2 = bO[ty], x1 = bi[ty], x0 = bO[ty] !
a = X |
; see table above
d vtnb ! ; l.e. a2 = status ! vtmb = a2 !
nop ! ; nop needed for vtmb change
x2 = vt[ty], x1 = vn{ty], xO = vb[ty] !

; Sort vertices
; a2 = bl-b0, al = b2-bl, a0 = b2-b0

; after this sequence it is known that:
; x2 <= x1 <= x0, 1.e. vt has the lowest value.

4.6.6.3.4 Division instruction

The Division instruction performs hardware division. The Hardware Division block is
capable to perform a 32-bit by 32-hit division with 32 bits result or 24-hit by 24-bit
division giving 24 bits result. The remainder is also available for use. The performed
division isa signed integer by unsigned integer division of X2 by Y2. The result of the
division will be available after 16 or 12 clock cycles respectively, and can be read into the
A2 register using another of the SPEC instructions. The division block is not pipelined,
and thus it isNOT possible to start a new divisions every clock cycle. If new divisions are
not started the result of the division will remain for loading at the output of the division
block. Refer to the instructions 8 - 15 on table below.

For further information see the chapter on page 52.

4.6.6.3.5 Special AU instructions

Specia AU instructions allow loading values of STATUS, N, and JMPREGto A2;
saturation of A-register valuesto 8-bit signed and unsigned format; absolute value
operations; and comparison of A-register values to zero. Refer to the instructions 16 - 39
on table below.

rev. 1.03

08.03.00



94

Defined SPEC instructions:

Dec Bin Operation Note
0 0000000 NOP

1 0000001 RETURN

2 0000010 reserved

3 0000011 reserved

4 0000100 Normalize N=NORM (X2)
5 0000101 reserved

6 0000110 Derive VTMB from STATUS register.
7 0000111 reserved

8 0001000 Start divide 32-bit X2/ Y2

9 0001001 Start divide 24-bit X2/ Y2
10 0001010 Start divide 32-bit X/(stored)
11 0001011 Start divide 24-bit X/(stored)
12 0001100 A2 <= Quotient

13 0001101 A2 <= Remainder (*)

14 0001110 reserved

15 0001111 reserved

16 0010000 A2 <= STATUS

17 0010001 A2 <=N

18 0010010 A2 <= JMPREG

19 0010011 reserved

20 0010100 Saturate A012 8b unsigned
21 0010101 Saturate A012 8b signed

22 0010110 reserved

23 0010111 reserved

24 0011000 A=abs(X)

25 0011001 A=abs(A)

26 0011010 A=abs(Y)

27 0011011 A=-abs(X)

28 0011100 A=-abs(A)

29 0011101 A=-abs(Y)

30 0011110 A=A+abs(X)

31 0011111 A=A-abs(X)

32-39 | 0100AAA | Zero detect (A2, AL, AO)

40-47 | 0101xxx reserved
48-55 | 0110xxx reserved
56-63 | 0111xxx reserved

64-127 | IXXXXXX reserved

(*) Remainder is not always valid/useful. Algorithm requires restore step for negative
remainders, see example below. Remainder is not valid for cases abs(X)<Y

rev. 1.03 08.03.00



a2 = renai nder ! ; Get actual remainder, may be negative

jmp(4, 4, positive) ! ; Fix negative remainder, otherwise ready
X2 = b2[divider] ! ; Get divider (delay slot)
a2 = a2 + x2 !
a2 = a2 + x2 ! ; 2*remainder + 2*divider
positive:

; A2 now has the remainder value times 2

rev. 1.03 08.03.00



96

4.7 Geometry Processor External Interface

4.7.1 General information

The Geometry Processor has two interfaces: the Stream /O and the Register Out bus, see
chapter Geometry Processor Bus Structure on page 47. The Stream 1/0 interface allows
the processor to either access the on card memory (read and write) or read data from the
host computer through the PCI bus (Stream Read address 0). The Register Out bus allows
the processor to write to most of the PCI accessible registers of the V S25203B chip.

The non-accessible registers are:

Register address range Function

20-29 VGA shadow registers
42-55 System control registers

NOTE! Thereisadelay fromissuing the writes on the Register Out bus to the time the
values are visible from the PCI registers due to the internal delays of the PCI block and
the inherent nature of the PCI bus.

4.7.2 Geometry Processor Interface PCI Register Description

The following registers are available for both the host computer and the Geometry
Processor. From the Geometry Processor, the registers can be written with the OUT
instruction. The only registers that can be read from the Geometry Processor are the
status_reg_ i n (register 194, at stream status 0), and dat a_i n (register 196, at
stream status 1).

[synchronization |register 192 |offset 300h |
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16

s |wait| |  stream_ref

I y_ref
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

rs 31 Geometry Processor resst bit (ge rest)

wait 30 Geometry Processor wait bit

dream ref 19:16 Stream reference

y ref 10:0 Y reference

Thege reset andwai t bitsare normal register bits, i.e. they must be cleared if they
have been set. Thislimitstheir usability from the Geometry Processor side.

Y_ref andstream ref arethreshold levelsfor the screen refresh line counter and the
Stream address 0 FIFO respectively. See also chapter Direct stream data on page 101.

rev. 1.03

08.03.00



[code_config |register 193 |offset 304h |
FOI'mat 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
ena I I
CCDEBASE

Fields Field Bits Description
ena 31 Program memory enable
OCDEBASE 16:0 Geometry Processor code base

The CODEBASE field is padded with 6 L SB zeros to get the actual word address where
the code islocated in the card memory. See also Chapter 4.7.3.

[status_reg_in |register 194 |offset 308h |
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
video y coord
| pv | | gpi | gpfl ngl bltil ve | id1 | id2 | 0k1| ok2
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
video y coord 26:16 Videoy coordinate
pv 14 Pixd vishle
gpi 11 Geometry Processor interrupt active
gpf 7 Geometry Processor flag
gnQ 6 Geometry Processor stream0 flag
blti 5 Block Trandfer Unitidle
VC 4 video compare
idl 3 Primitive processor idle
id2 2 Pixd processor idle
okl 1 Primitive processor init ok
ok2 0 Pixd processor init ok

St at us_reg_i n register isvisible on the Geometry Processor stream interface as
status 0. The fields are read-only except fieldspv, gpi and gpf that are read/write fields.
Thisis nearly the sameregister asst at us register (48).

rev. 1.03 08.03.00



98

video_y_coord

Video y coordinate. Current video refresh scanline.

pv

Pixel visible. This hit is set to one when a visible pixel has been detected by the pixel
processor in the zr ead operation. The bit is reset by writing a value "1" into this field.
Refertothegri d_r eg (102) register.

gpi

PCI Geometry Processor interrupt active. The interrupt can be caused from the Geometry
Processor by writing avalue "1" to this bit. This bit should be set back to value "0" after a
while, because it is not an automatic operation. This interrupt is reset from the st at us
register (48).

gpf

Geometry Processor flag.

gp0

Geometry Processor stream O flag.

blti

Block Transfer Unit idle. Indicates status of the Block Transfer unit.
1 idle

0 busy

\4M

This bit is one when the vi deo_y_coord field value is equal or greater than the
vi deo_y_ref vaueof theref _reg, register 49.

id1

Primitive processor idle. This bit is one when the primitive processor isin the idle state.
id2

Pixel processor idle. This hit is one when the pixel processor isin the idle state.

okl

Primitive processor initialization ok. This bit is one if initial values are alowed to be
written to the primitive processor.

ok2

Pixel processor initialization ok. It is used for finding out when the pixel processor can be
initialized. In VS25203, itisgivenby i d1 andi d2.

[data_in |register 196 |offset 310h |
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
data_in
data_in
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
data in 31.0 Datatranderring to Geometry Processor
Dat a_i n register is PCl writable register for transferring data to Geometry Processor.
It isvisible on the Geometry Processor stream interface as status 1 and it can also be
written to via the Register Out bus interface.
rev. 1.03 08.03.00



99

[data_out |register 197 |offset 314h |
Format 31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16
data_out
data_out
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
data_out 31.0 Datatrandferring from Geometry Processor

Thedat a_out register is PCI readable register for transferring data from Geometry
Processor and it can be written to via the register bus out interface.

4.7.3 Geometry Processor instruction code interface

Theinstruction code for the Geometry Processor resides originally in the card memory.
The code sizeis 2* = 16384 = 16 kwords and the word size is 32 bits. Since the card
memory is 64 bits wide, the code size there is 8 kwords. The 32-bit instructions are
packed in little-endian order, i.e. the word at address with LSB=0is at the LSB part of the

64-bit word.
Address @ card Instruction addresses
CODEBASE+8191 16383 16382
CODEBASE+1 3 2
CODEBASE 1 0
64 31 32 0

The program memory is cached in the instruction cache which is a 4-way set associative
cache with four 128-word blocks. There is currently no other way than jumping through 4
banks to flush the cache. The user should be careful when setting the CODEBASE register.

NOTE! The cacheis not coherent with the program memory on card.
The recommended way of setting the CODEBASE is as follows:

1) setthegp_r eset hit

2) write the CODEBASE register

3) reset thegp_r eset hit

This causes the instruction cache to start in the initial state, and all the Geometry
Processor registers to be reset, however the data memories retain their values.

See also the chapter Instruction Execution on page 54.

rev. 1.03

08.03.00



100

4.7.4 Geometry Processor Stream 1/O interface

4.7.4.1 Stream I/O

The Stream |/O is controlled by two pointer registers: RDADDR and WRADDR, which are
write-only registers. Writing to these registers sets the corresponding card memory 64 -bit
word address where the next stream operation will access data. These registers are
internally self incrementing. The address O is special for reading the stream. It causes the
stream fetches to fetch data from val ues supplied through the PCI interface. Also in the
address O case the read address pointer register is not self incrementing.

The stream data to be read is stored into a stream fetch register which is a 64-bit register.
The value of this registers remains constant until the next time the Stream Read
instruction (RD_STRM) sets the fetch stream bit (see FS bit on page 91). The stream will
have the new data ready for reading at the next instruction. Y ou can have at most every
second instruction fetching the stream. The stream fetch register is visible through the
Stream Read instruction. The fetch register can be read in various formats. The general
view isillustrated below:

63 0
716|5] 4] 3] 2] 1] 0] byte (8hits)
3 2 1 0 short (16 hits)

1 0 int (32 bits)
|| 24b 0 misc

The numeric formats can use either signed or unsigned integers or signed fixed point
numeric formats. The special values are considered to be unsigned except for the floating
point numbers.

Dec | Numeric | Special

0 NOP NOP

1 24b status 1

2 intl status 0

3 int0

4 short3

5 short2

6 shortl

7 shortO

8 byte7 8-bit mult by 16 (1)

9 byte6 8-bitmultby 8 (1)

10 byte5 8-bitmultby 4 (1)

11 byte4 8-bitmultby 2 (1)

12 byte3 float conv - integer (bits 63-32)
13 byte2 float conv - integer (bits 31-0)
14 bytel float conv - fixed (bits 63-32)
15 byteO float conv - fixed (bits 31-0)

The stream is written through two Geometry Processor special registers: STREAM HI )
and STREAM LO) . These Stream registers can be written multiple times, and new data
overridesthe old one. The datais sent to the stream only when the W5 bit of the Stream
Write instruction is set to 1.

rev. 1.03 08.03.00



101

4.7.4.2 Direct stream data

In order to transfer data from the PCI bus to the Geometry Processor, the VV S25203B
contains a FIFO buffer, with room for 16 data words, each 64 bits wide. This buffer is
read by the Geometry Processor by using the Stream Read mechanism and by targeting
the reads to the stream address 0. Stream address mechanism also does not auto increment
when the reads are done to the address 0, this means that after the read address has been
changed to 0 all the following reads will be done from the FIFO until an explicit read
address change is done.

The datais written to the FIFO by writing it to the register range 224-255. It does not
matter which addresses in this range are used (except for the following even/odd
restriction), in any case the data is added to the next position in the FIFO. Asthe stream
consists of 64-bit words, two register writes are needed to generate one stream word. The
less significant 32 bits of the word should be written to an even register address and the
most significant 32 bits should be written to an odd register address. The less significant
32 bits of the 64-bit word should be written first then the most significant 32 bits. A range
of register addressesis used (instead of single address) so that efficient PCI burst writes
can be used when adding multiple data words to the FIFO.

In addition to the PCI writes the FIFO can be filled by using the bus mastering
mechanism, for further information see chapter PCI Bus starting on page 18.

The FIFO reads are controlled with the basic Stream Read mechanism. This means that
the Geometry Processor will stall if it triesto read from an empty FIFO.

Thereis no similar hardware protection against writing too much data to the FIFO, instead
the status of the FIFO is monitored, and this information can be used to control either the
software writing to the FIFO or to control the bus master command stream which isfilling
the FIFO. The FIFO status monitoring is based on two register fields: st r eam r ef
which gives the reference value for how many items should be in the FIFO and
streanD_f | ag whichissetto 1if the FIFO contains morethan st r eam r ef
elements and O otherwise. The st r eanD_f | ag isavailable for the Geometry Processor
inregister 194 (bit 6). It isalso availablein register 48, and can be used to control PCI bus
master jump and wait commands, see pages 21 and 23.

Because of internal pipelining the actual filling of the FIFO might be delayed relative to
the PCI bus write operation. In order to compensate thisthest r eanD_f | ag in register
48 is set to 1 while the internal pipelines contain data. This can cause the

st rean0D_f | ag to be 1 unexpetedly, but the total effect isto protect the FIFO from
being overfilled because of the pipeline delays.

rev. 1.03

08.03.00



102

5. Primitive Processor

5.1 Overview

The VS_VP Primitive Processor is responsible for converting primitives into individual
pixels, which are then sent to the Pixel Processor. The primitives can be rectangles,
triangles or lines, but in all cases they are described in the same way: The shape of the
primitiveis specified using edges (edge0, edgel, edge2, pages from 116 to 119) and
the minimum and maximum Y -coordinates (registersy_i nit, y_end, page 123), and
the contents by giving coefficients for equations that specify the different properties of the
pixelsinside the edges. The edges are aways straight lines, but the pixel properties can be
interpolated with either linear interpolation or with perspective correction.

The Primitive Processor handles complete primitives so that there is no need to split them
into more simple constructs (such as trapezoids). This makes the initialization process
both simpler and faster. A primitiveisinitialized by loading all the necessary values into
the registers of the Primitive Processor. When the last register (y_end, maximum Y -
coordinate, page 123) isloaded, the rasterization process begins. Because the registers are
double buffered, it is possible to start the loading of the next primitive at the same time as
the previous one is being rasterized. These registers also preserve their values when the
triangle is rasterized. It is therefore unnecessary to reload values which do not change
between consecutive triangles.

The Primitive Processor operates in the screen coordinate space; it produces the screen
coordinates, z-depth, and up to eight perspective corrected interpolated values for each
pixel. Of the eight interpolated values, four have an accuracy of eight bits and are thus
suitable for color and transparency values (RGBT, pages from 106 to 109). The other four
values have twelve bits of accuracy and are suitable to be used as texture coordinates
(ATU/ATV and BTU/BTV, pages from 110 to 113).

Texture coordinates are unsigned 12-bit quantities. The hardware does not handle
negative texture coordinates. The Primitive Processor also includes some texture address
component manipulation (gri d_r eqQ)

Basic Formulas
The following formulas describe the edges of a primitive:

EO = (y x (edge0_dy x 8)) + (xx (edge0_dx x 8)) + edge0_init
E1l=(y x (edgel_dy x 8)) + (xx (edgel _dx x 8)) + edgel init
E2 = (y x (edge2_dy x 8)) + (xx (edge2_dx x 8)) + edge2_init

where:
X = amount of horizontal pixels, relativetox_i ni t .
y = amount of vertical pixels, relativetoy_init.
Edge deltas dx and dy signify the change of the edge function within the distance
of one subpixel unit (one eighth of a pixel). Therefore calculation must be done
in subpixel units.
EdgeO-edge? are edge interpolators from pages 117 to 119.
See aso the Edge Ordering section on page 116.

rev. 1.03

08.03.00



103

Edge functions are referred with indices from edge_or der register, page 116. All the
following statements have to be true, for apixel to beinside a primitive:

e(left_l) >0
e(lefi_2)2 0
e(right_l) >0
e(right_Z) >0
€0, el and e2 functions give positive or negative results. Positive means that the pixel is

inside a primitive, negative means outside, respectively. Note that for the left edges, zero
means inside a primitive.

The following formulas are calculated per pixel to perform perspective correction.
Next four are for colors and transparency:

(xxr dx)+(y><r )+r init

R_[(XXP dx)+(yx p_dy)+p_ tmt]xf
- (xx g_dx)+(yx g_dy)+g_init
[(x  p_tx) +(yx p_ay)+p_ mlt]xf
. (x xb_dx)+(y xb_dy)+b_init
[(rx p_ate)+ (v x p_ay) + p_ mtt]xf
T=

( x1 dx)+(y><t_aj/)+t_mlt
(

[(xxp dx)+ y><p_dy)+p_init]><2i8

and the next four are for A and B texture interpolators; note the coefficient 2% - thisis
because of the 12-hit result.
(x x atu_dx)+(y * atu_dy) + atu_init
[(x x p_ix)+ (v x p_ay) + p_imit] x
(x x atv_dx)+(y x atv_dy)+atv_init
[(x % p_ax) +(yx p_dy) + p_init| xf

(x X btu dx) (y X btu aﬁ/) +btu__init

atu =

atv =

btu =
[(xxp_dx) (yxp dy)+p zmt]x—

(xxbtv_dx) (yxbt‘v ay)+btv init

[(xXp_dx) (yxp_dy)+p_ znzt]xi

btv =

rev. 1.03

08.03.00



104

x = amount of horizontal pixels, relativeto x_init.
y = amount of vertical pixels, relativetoy init.
p_dx, p_dyand p_init registers described in page 122.

Note that dx and dy specify the change of the proper value within the distance of one pixel
and x and y are also pixel coordinates.

All inal: the primitive is defined with three edge functions and with the height of the
primitive, (y_end—y_inif). All the pixels that are within the vertical bounds and have a
non-negative value for left edge functions or a positive value for right edge functions are

considered to be inside the primitive.
Primitive to

be rasterized

y_init

y_end

Theedge_or der register specifies the left and right edges. Tetragons can be rasterized
by usingy_i nit andy_end and two edge functions; lines are just narrow tetragons.
Notethat y _end must always be specified even if the edges define the lower end of a
primitive. Generally y _end should be the first scanline that is not any more drawn.

The Primitive Processor itself does not use the propertiesin any way. It just performs the
calculations described, and the properties finally have effect in the Pixel Processor where
they are used to define the final color for the pixel in question. This means that the
properties (such as depth) need not be the real values, but can instead be something
completely different, if thisis used to achieve special effectsin the pixel pipeline.

rev. 1.03

08.03.00



5.2 Primitive Processor Registers

Register address Offset  |Register name
64 0100h |cr_init
65 0104h |cr_dy
66 0108h |cr_dx
67 010Ch [cg init
68 0110h [cg dy
69 0114h ([cg dx
70 0118h |cb_init
71 011Ch [cb_dy
72 0120h |cb_dx
73 0124h |ct init
74 0128h |ct_dy
75 012Ch |ct_dx
76 0130h |atu_init
77 0134h |atu_dy
78 0138h |atu_dx
79 013Ch |atv_init
80 0140h [atv_dy
81 0144h Jatv_dx
82 0148h |btu_init
83 0140h [btu_dy
84 0150h |btu_dx
85 0154h |btv_init
86 0158h [btv_dy
87 015Ch |btv_dx
88 0160h |z_shr
89 0164h |z_init
90 0168h |z dy
91 016Ch |z_dx
92 0170h |edge_order
93 0174h |edge0_init
94 0178h |edge0_dx
95 017Ch [edge0_dy
96 0180h |edgel_init
97 0184h |edgel dx
98 0188h |edgel dy
99 018Ch |edge2 init
100 0190h |edge2 dx
101 0194h [edge2 dy
102 0198h [grid_reg
103 0190h [p_init
104 01A0h [p_dy
105 01Adh |p_dx
106 01A8h |x_init
107 01ACh |y_init
108 01BOh |y_end
109 01B4h |raster_ext

Notethat _dx and _dy register ordering for edges differs from other interpolators.

105

rev. 1.03

08.03.00



106

5.2.1 Red Interpolator

The red interpolator (CR — color red) has three registers describing the values needed by
the Primitive Processor. Tl _i ni t value specifies the initial value of the red

interpolator in the Primitive Processor._dy specifies the increment which is added to

the red value interpolator, when the Primitive Processor steps one pixel in Y-direction.

cr _dy specifies the increment which is added to the red value interpolator, when the
Primitive Processor steps one pixel in X-direction.

cr_init [register 64 |offset 0100h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cr_init
cr_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cr_init 31:0 Initial value for the red interpolator
[cr_dy [register 65 |offset 0104h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cr_dy
cr_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cr_dy 31:0 Red delta within one vertical pixel
[er_dx [register 66 |offset 0108h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cr_dx
cr_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cr_dx 31:0 Red delta within one horizontal pixel
rev. 1.03 08.03.00



5.2.2 Green Interpolator

107

The green interpolator (CG — color green) is similar to the red interpolator (CR) in all
ways, except for the property being interpolated. The green interpolator uses three
registerscg_i nit,cg_dy andcg_dx.

[cg_init |register 67 |offset 010Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cg_init
cg_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cg_init 31:0 Initial value for the green interpolator
[cg_dy [register 68 |offset 0110h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cg dy
cg dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cg dy 31:0 Green delta within one vertical pixel
[cg_dx |register 69 |offset 0114h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cg dx
cg dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cg_dx 31:0 Green delta within one horizontal pixel

rev. 1.03

08.03.00



108

5.2.3 Blue Interpolator

The blue interpolator (CB — color blue) is similar to the red interpolator (CR) in all ways,
except for the property being interpolated. The blue interpolator uses three registers:
cb_init,cb_dy andcb_dx.

|cb_init [register 70 |offset 0118h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cb_init
cb_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cb_init 31:0 Initial value for the blue interpolator
[cb_dy [register 71 |offset 011Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cb_dy
cb_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cb_dy 31:0 Blue delta within one vertical pixel
|cb_dx |register 72 |offset 0120h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cb_dx
cb_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cb_dx 31:0 Blue delta within one horizontal pixel

rev. 1.03 08.03.00



109

5.2.4 Transparency Interpolator

The transparency interpolator (CT — color transparency) is similar to the red interpolator
(CR) in all ways, except for the property being interpolated. The transparency interpolator
uses three registerst _i ni t,ct _dy andct _dx.

|ct_init |register 73 |offset 0124h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ct_init
ct_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ct_init 31:0 Initial value for transparency interpolator
[ct_dy [register 74 |offset 0128h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ct_dy
ct_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ct dy 31:0 Transparency delta within one vertical pixel
|ct_dx |register 75 |offset 012Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ct_dx
ct_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ct_dx 310 Transparency delta within one horizontal pixel

rev. 1.03 08.03.00



110

5.2.5 A Texture U Interpolator (ATU)

The ATU interpolator is similar to the red interpolator (CR) in al ways, except for the

property being interpolated. Even though the size of the output is different, the

initialization process is the same, because a different scale factor is used in the perspective
division. ATU interpolator usesthreeregisters: at u_i ni t ,at u_dy and at u_dx.

atu_init [register 76 |offset 0130h |
Format 31 30 29 28 27 26 25 24 23 21 20 19 18 17 16
atu_init
atu_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atu_init 31:0 Initial value for A texture U interpolator
[atu_dy |register 77 |offset 0134h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
atu_dy
atu_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atu_dy 31:0 A texture U delta within one vertical pixel
|atu_dx |register 78 |offset 0138h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
atu_dx
atu_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atu_dx 31:0 A texture U delta within one horizontal pixel
rev. 1.03 08.03.00




111

5.2.6 A Texture V Interpolator (ATV)

The ATV interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. ATV interpolator usesthreeregisters: at v_i ni t, at v_dy and at v_dx.

atv_init |register 79 |offset 013Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
atv_init
atv_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atv_init 31:0 Initial value for A texture V interpolator
[atv_dy |register 80 |offset 0140h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
atv_dy
atv_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atv_dy 31:0 A texture V delta within one vertical pixel
|atv_dx |register 81 |offset 0144h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
atv_dx
atv_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
atv_dx 31:0 A texture V delta within one horizontal pixel
rev. 1.03 08.03.00



112

5.2.7 B Texture U Interpolator (BTU)

The BTU interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. BTU interpolator uses threeregisters: bt u_i ni t, bt u_dy and bt u_dx.

[btu_init [register 82 |offset 0148h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btu_init
btu_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btu_init 31:0 Initial value for B texture U interpolator
[btu_dy [register 83 |offset 014Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btu_dy
btu_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btu_dy 31:0 B texture U delta within one vertical pixel
[btu_dx |register 84 |offset 0150h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btu_dx
btu_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btu_dx 31:0 B texture U delta within one horizontal pixel
rev. 1.03 08.03.00



113

5.2.8 B Texture V Interpolator (BTV)

The BTV interpolator is similar to the red interpolator (CR) in all ways, except for the
property being interpolated. Even though the size of the output is different, the
initialization is the same, because a different scale factor is used in the perspective
division. Btv interpolator uses threeregisters: bt v_i ni t , bt v_dy and bt v_dx.

[btv_init |register 85 |offset 0154h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btv_init
btv_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btv_init 31:0 Initial value for B texture V interpolator
[btv_dy |register 86 |offset 0158h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btv_dy
btv_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btv_dy 31:0 B texture V delta within one vertical pixel
|btv_dx |register 87 |offset 015Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
btv_dx
btv_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
btv_dx 31:0 B texture V delta within one horizontal pixel
rev. 1.03 08.03.00



114

5.2.9 Z Scale Factor

|z_shr [register 88 |offset 0160h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| z _shr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
z_shr 4:0 Scaling factor for z-depth calculations

Thez_shr register specifies the amount of bitsthe Z interpolator is shifted to the right
for Z-Buffering. Since the output Z property isonly 24 bits, it is possible to gain extra
accuracy to theinterpolation by usingaz_shr of 3. If thez_shr isdynamically
calculated, even better accuracy is possible.

Maximum shift value is 24.

Asz_init (register 89) isa32-bit register, we can write to it avery accurate value of Z.
z_shr issimilar to SUBS in texture space. It is possible to compute dynamically which
of the three corners of atriangle has the largest value (nearest), and use more fixed point
bits to represent the Z value. As aresult, we can choose the fixed point precision
dynamically per triangle if we specify the number of bits to right-shift in order to get the
actual Z value for Z buffering. Basically, we should OR every Z coordinate together and
find the highest value " 1" bit of the result. For example, if it is 26, we should multiply the
vertex Z valuesby 16 and use 4 inthez_shr register to get the actual Z -value.

rev. 1.03

08.03.00



115

5.2.10 Z Interpolator

V S25203 uses "perspective correct” Z-buffer; i.e. using 1/Z values to perform Z buffering.
The Z interpolator has three registers describing the depth value of a pixel needed by the
Primitive Processor. z_i ni t value specifiesthe initial value of the Z interpolator in the
Primitive Processor. z_dy specifies the increment which is added to the Z value
interpolator, when the Primitive Processor steps one pixel in Y -direction. z_dx specifies
the increment which is added to the Z value interpolator, when the Primitive Processor
steps one pixel in X-direction.

z init [register 89 |offset 0164h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
Z_init
z_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
Z_init 31:0 Initial value for the Z-depth register
[z_dy [register 90 |offset 0168h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
z_dy
z_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
z_dy 310 Z-depth delta within one vertical pixel
[z_dx [register 91 [offset 016Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
z_dx
z_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
z_dx 310 Z-depth delta within one horizontal pixel

rev. 1.03

08.03.00



116

5.2.11 Edge Ordering

|edge_order |register 92 Joffset 0170h

Format 31 30 2 28 27 26 25 24 23 2 21 20 19 18 17 16

[right 2 |right 1 Jiefc 2 [left_1

15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description
right 2 7:6 Second right edge d ot (edge index)
right 1 54 Frd right edge dat (edgeindex)
left 2 32 Second | eft edge dlat (edge index)
left 1 1.0 First left edge dat (edge index)
right 2
Specifies which of the edgesis used as the second right edge of the primitive.
right 1
Specifies which of the edgesis used as the first right edge of the primitive.
left 2
Specifies which of the edgesis used as the second |eft edge of the primitive.
left 1

Specifies which of the edgesis used as the first left edge of the primitive.

Theedge_or der register is used to specify which of the edges of a primitive are on the
left side, and which on the right side. The Primitive Processor supports three edgesin
total, so one side uses two edges, and the other side uses the remaining one. The bitcode
of the latter edge needs to be duplicated when writing it to appropriate fields; any field
may not be empty. If atetragon isto be drawn, two fields have to be duplicated. Upper
and lower edges are defined with the registersy_i nit,andy_end, page 123. The value
inleftl,left2,rightlandright?2isa?2-bit number that specifiesthe index of the
edge that belongs to the given slot. Value 0 means that the edge is described with registers
edgeO_i ni t, edge0_dx, edge0_dy, and similarly with the other values. The
number must be in the range of 0-2.(edge0, edgel, edge2 interpolators on pages 117-

119.)
See also page 102.
Examples
EO _
Contents of fields:
E2 RIGHT 2 |RIGHT 1 |LEFT 2 |LEFT 1
El 0 o Jo |1 [t Jo [1 Jo
Y_INIT  Contents of fields:
EO El

RIGHT 2JRIGHT 1| LEFT 2 | LEFT 1
Y_END o]l1]o]1]o]Jo]Jo]o

rev. 1.03 08.03.00



117

5.2.12 EdgeO Interpolator

Primitive is formed with three edge interpolators. Edge0 interpolator is used to describe
the Oth edge of primitive. edgeO_i ni t providestheinitial value of edge interpolator O.
edgeO0_dy isadded to the edge interpolator 0 value, when the Primitive Processor steps
one pixel to the down. edge0_dx is added to the 0" edge interpolator value, when the
Primitive Processor steps one pixel to right. Due to subpixel resolution _dx and _dy
values are multiplied by eight during interpolation.

[edge0_init [register 93 |offset 0174h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge(_init
edge(_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edge(_init 31:0 Initial value for edge0
|edge0_dx Iregister 9 Ioffset 0178h
FOl‘mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge0_dx
edge0_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edgel0_dx 31:0 Edge0 delta within one horizontal pixel
[edge0_dy [register 95 [offset 017Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge0_dy
edge0_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edge0_dy 31:0 Edge0 delta within one vertical pixel
rev. 1.03 08.03.00



118

5.2.13 Edge1 Interpolator

The Edgel interpolator is similar to EdgeQ interpolator in all ways, except for the number
of the edge it controls. Edgel interpolator uses three registers: edgel_ini t,
edgel_dx and edgel_dy.

[edgel_init |register 96 |offset 0180h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edgel_init
edgel_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edgel_init 31:0 Initial value for edgel
[edgel_dx |register 97 |offset 0184h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edgel_dx
edgel_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edgel_dx 31:0 Edgel delta within one horizontal pixel
[edgel_dy |register 98 |offset 0188h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edgel_dy
edgel_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edgel_dy 31:0 Edgel delta within one vertical pixel
rev. 1.03 08.03.00



119

5.2.14 Edge2 Interpolator

The Edge2 interpolator is similar to EdgeQ interpolator in al ways, except for the number
of the edge it controls. Edge2 interpolator usesthree registers: edge2_ini t,
edge2_dx and edge2_dy

[edge2_init |register 99 |offset 018Ch
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge2 _init
edge2 _init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edge?_init 31:0 Initial value for edge2
[edge2_dx |register 100 |offset 0190h
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge2 dx
edge2 dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edge2_dx 31:0 Edge2 delta within one horizontal pixel
[edge2_dy |register 101 |offset 0194h
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
edge2 dy
edge2 dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
edge2 dy 31:0 Edge2 delta within one vertical pixel
rev. 1.03 08.03.00



120

5.2.15 Grid Register

[grid_reg |register 102 |offset 0198h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
bq |bnv|bnu| aq | anvl anu
e 1 _[silso[oimo] Thig
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
rhig 5:0 Rendering screen height/32
g00 8 grid mask 00
g01 9 grid mask 01
g10 10 grid mask 10
gll 11 grid mask 11
cp 13 constant_perspective
anu 16 Anu
anv 17 Anv
aq 18 A texture quad loop
bnu 19 Bnu
bnv 20 Bnv
bq 21 B texture quad loop
g00, g01, g10, g11
go0 | gl10
g0l | gl1

Primitive Processor uses 2 x 2 grid mask to enable or disable pixel visibility. When the
field is set to one, the corresponding bit in Primitive Processor is disabled and vice versa.
If adjacent fields are set to one, then the Primitive Processor ignores the processing of the
corresponding horizontal line, (pairs g00,g10 and g01,g11). This doubles rasterizing
speed, and is especially good for doing fast visibility checks using bit 14 in register 48 on
page 39.

gll

Grid mask 11. Skips pixels with odd x and y coordinates. Notice that grid skip is
especialy effective if complete horizontal lines are skipped, otherwise rasterization
proceeds at normal speed.

gl0

Grid mask 10. Skips pixels with odd x and even y coordinates.

g01

Grid mask 01. Skips pixels with even x and odd y coordinates.

g00

Grid mask 00. Skips pixels with even x and y coordinates.

Grid mask works according to the following:

if (grid mask[x and 1, y and 1] ==1)
then kill pixel

rev. 1.03

08.03.00



121

Itisused, for example, to perform simple motion blur by enabling only one of the four
pixels to be drawn every frame, and the bit is changed randomly. This gives the effect of
having partial appearance of all four consecutive frames (a simple form of motion blur).

Horizontal pixels

o 1 2 3 4 5...

0 |oo|10]00([10f00f10
< 1|oijuforjiijol|u
g 2 (00|10 00|10
oY)
5 3 jo1]1fo1|u
g 40010
«

5 (01|11

Primitive Processor tiles the whole screen with grid mask, like the diagram on above.

cp
Constant_perspective. If the cp = 1 then the perspective correction is constant for R, G, B

and T interpolators. If cp = 0 then the perspective correction is performed by using P
interpolator, refer to page 122.

anu,anv
A_not_ Umsb; A_not Vmsb.

If anu =0, the msb of the A texture interpolator U coordinate isinverted. If anv =0,
the msb of the A texture interpolator V coordinate is inverted.

aq

A texture quad loop. Multiplies by four the texture coordinate values for the A texture. If
this bit is set to one, loop range is quadruplicated with two step bitwise left shift. The
downside of using quad looping is that the two resultant LSB bits are zero which means
that only every fourth texel of atexture map can be sampled into the final output. This
artifact isvisible if atextureislooked at very closely, or if the texture contains some
easily recognizable patterns, like text.

bnu,bnv

B_not_Umsb; B_not_Vmsh.

If bnu= 0, the msb of the B texture interpolator U coordinateisinverted. If bnv = 0,
the msb of the B texture interpolator V coordinate is inverted.

bq

B texture quad loop. Multiplies by four the texture coordinate values for the B texture. If
this bit is set to one, loop range is quadruplicated with atwo step binary |eft shift.

rhig

Rendering screen height (in number of pixels) divided by 32. It isthe height of the
rendering area as multiples of 32-pixel blocks.

rev. 1.03

08.03.00



122

5.2.16 P Interpolator

When linear interpolation is desired, the P should be initialized to a constant value
(normally 7FFFFFFFh for maximum accuracy). For more information on linear and
perspective initializations, refer tothecr _i nit andz_i ni t registers. The P
interpolator uses three registers: p_init, p_dy and p_dx.

[p_init [register 103 [offset 019Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
p_init
p_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
p_init 31:0 Initial value for the P interpolator
[p_dy [register 104 |offset 01AOh
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
p_dy
p_dy
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
p_dy 31:0 P delta within one vertical pixel
[p_dx |register 105 |offset 01A4h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
p_dx
p_dx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
p_dx 31:0 P delta within one horizontal pixel

rev. 1.03 08.03.00



123

5.2.17 Start/End Coordinates

These registers specify the point from which the rasterization starts, and at the same time
define the y extents for the primitive.

|x_init |register 106 |offset 01A8h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| x_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
X_init 10:0 Initial x coordinate of the rasterization process
Thisregister is used for describing the starting point of the primitive to be rasterized.
Optionally the register should contain the X coordinate of the leftmost visible pixel of the
primitive on the row specifiedbyy_i ni t.
[y_init [register 107 |offset 01ACh |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| y_init
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
y_init 10:0 Initial y coordinate of the rasterization process
They_i ni t register isused for describing the starting point of the primitive to be
rasterized. It isthe initial y coordinate where the triangle rasterization starts. The register
should contain the Y coordinate of the first screen row that should be rasterized. Normally
thisisthe row containing the first visible pixel of the primitive, but it is also possible to
uselarger Y value and in this way skip the topmost part of the primitive. The actual area
covered by the triangle depends on the values of thex_i nit andy_i ni t registersand
on the edge parameters.
[y_end |register 108 |offset 01BOh |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| y_end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
y_end 10:0 Bottom row of the primitive

Thisregister gives the maximum Y coordinate of the primitive. It isthefirst row that is
not any more drawn. Writing they_end signals the Primitive Processor that al the other

rev. 1.03

08.03.00



124

registers are set and it should start processing a new triangle. This means that they _end
should be the last register written during the initialization of the primitive.

5.2.18 raster_ext Register

|raster_ext [register 109 |offset 01B4h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|rst
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
rst 0 Soft reset for primitive processor

raster_ext (rasterize extratriangle) enables a soft reset. When 1 is written to this register,
the Primitive Processor performs a soft reset, aborts the current triangle and starts the

rasterization of the next triangle (if any).

rev. 1.03 08.03.00



125

6. Pixel Processor

6.1 Overview

The Pixel Processor is responsible for calculating the final color for all pixelsina
primitive. The color is generated by executing a shading program, which is written by the
user (or invoked through the device driver). It is executed for each pixel, and combines
datafrom registers, pixel propertiesin the Primitive Processor FIFO, texture maps and
finally the old color in the frame buffer. The shading program is located in code memory
of the Pixel Processor (see also Register Map on page 13). Code memory can store up to
32 commands, with many separate shading programs. It is possible to change the shading
program for each primitive if needed by determining a new start address or by loading a
completely new program to the code memory.

Pixel Processor must beinitialized before starting rendering.

The pixel color for the primitive is formed from the color of the primitive surface and
from the lighting of the environment. These are described by using registers, pixel
properties and texture maps. The maps can be indexed color or true-color (TRGB, where
T ismost significant byte and B isleast significant byte), and can be filtered with bilinear
and trilinear filtering regardless of the mode. It is also possible to use two simultaneous
textures so that one describes the surface and the other contains information about the
lighting, for example, for shadows or highlights.

All these data can be combined by using logic operations and blending in away controlled
by the shading program. Finally, the pixel color can be combined with the old color of the
pixel in order to create transparent surfaces or other effects. All these operations are
carried out with full true-color accuracy, and the final result can be stored in 32-bit true-
color, or 16 bit hi-color format. Dithering is also possible for better color quality.

rev. 1.03

08.03.00



126

6.2 Functional Block Diagram

Ll

Data from Data to and

Primitive from Frame
Processor Buffer
Data from

FIFO Register bus DITHER
\/
COEF 0-3 LOGIC T™P 1-3
A A ) 1
\ Y | Result32bit
A A A A
A \ i \ A 32Dbit
Y Y \ B 32 bit
\ \ Control 8 bit
\ YVvy YVvy
PALETTE | | TEXTURE | TEXTURE BLEND
RAM o FETCH o FILTER

TT Data from A and
- B Textures

The Pixel Processor consists of four central buses connected to the different functional
units as seen above. The A and B buses are the main parameters of the operation, the
Control busisamodifier bus, and the Result bus is used to store the result into one of the
three temporary registers (TMP1-3) or send to the screen. The main parameters can be
colors (TRGB, 8 bits per component where T is the most significant byte and B isthe
least significant byte), or texture coordinates (UV, 12 bits per component). They can be
read from temporary registers, coefficient registers or from the input FIFO fields. The
modifier bus width is 8 bits, and the usage depends on the function. Every shading
instruction specifies the functional unit to use, and the connections for each bus.

A central feature of the Pixel Processor isthe availability of temporary registers. This
makes it possible to construct complex shading operations.

The blend unit creates an intermediate color between the A and B colors according to a
blending factor in the Control bus. It is aso possible to alter the alive-flag of the pixel,
based on the resulting transparency of the operation. The alteration can also be based on
transparency dither, so that stipple-transparency is possible.

Texture fetch reads a texture color from the external graphics memory, given the texture
coordinatesin A-bus. The texture datain memory can use 4 to 32 bits per pixel, and the
texture unit expands the storage format into full 32 bits. The 4 and 8 bit data are routed
through a palette for this purpose. If MIP-mapping is used, the texture fetch operation also
modifies the texture coordinate based on the active MIP-level, read from the control bus.
The texture coordinates can be looped or clamped.

rev. 1.03

08.03.00



127

Texture filtering works together with the texture fetch unit. It fetches multiple texture
colors which are combined according to the fractional texture coordinates for bilinear
interpolation. Trilinear interpolation can be created with two texture filtering operations
and one blend operation. When bilin filtering is used, 4 low order bits of the texture
coordinates are used as the fractiona bits.

Thelogic unit provides all possible logic operations between the two colors, as well as

arithmetic operations and minimum and maximum operations.

6.2.1 Bus Address Table

Coefficient registers (COEF0-3) are read-only registers for the Pixel Processor; see
registers 1 to 4, pages 141 and 142. TMP1-3 registers can be used to store temporary
results in a shading program. T signifies transparency, R red, G green, B blue, ATU A
texture U coordinate and ATV A texture V coordinate and BTU B texture U coordinate
and BTV B texture V coordinate.

Address |A bus B bus control bus Destination
0 COEFO (TRGB) |COEFO (TRGB) [COEFO (T) Frame buffer
1 COEF1 (TRGB) |COEF1(TRGB) |COEF1 (T) TMP1

2 COEF2 (TRGB) |COEF2 (TRGB) |COEF2 (T) TMP2

3 COEF3 (TRGB) |COEF3(TRGB) |COEF3 (T) TMP3

4 FIFO (TRGB) FIFO (TRGB) FIFO (T) -

5 TMP1(TRGB) |TMP1(TRGB) |TMP1(T) -

6 TMP2 (TRGB) |TMP2(TRGB) |TMP2(T) -

7 TMP3 (TRGB) |TMP3(TRGB) |TMP3(T) -

8 FIFO ATU/ATV |reserved FIFO ATV (b.0-7) |-

9 FIFOBTU/BTV |FIFOBTU/BTV |FIFOBTV (b.0-7) |-

10 FIFOZz reserved TMP2 (R) -

11 reserved reserved TMP2 (G) -

12 reserved reserved TMP2 (B) -

13 reserved reserved FIFO (R) -

14 reserved reserved FIFO (G) -

15 ZERO reserved FIFO (B) -

Note that the coefficient registers can only be used by either A busor B bus at the same
time. Furthermore, A bus has higher priority than B bus.

Note also that for FIFO ATV and FIFO BTV on the C bus, thereis a possibility of shifting
the data asit is being transferred to the C bus. Bit selection is controlled by param -field
bit 18 (see color_op or logic)

rev. 1.03

08.03.00



128

6.2.2 FIFO
Property |Width (Normal usage
CR 8 hits |Red
CG 8 hits |Green
CB 8 hits |Blue
CT 8 hits |Transparency, Blending factor, MIP-map level
ATU 12 hits |First texture X-coordinate
ATV 12 bits |First texture Y -coordinate
BTU 12 bits |Second texture X-coordinate
BTV 12 bits |Second texture Y -coordinate
z 24 bits [Depth value used for Z-buffering

Red, Green Blue as well as texture coordinates can be used as diffuse, specular and fog
intesity.

6.2.3 Coefficient Registers

Property |Width (Normal usage

COEF0 |32 hits |Coefficient 0 (T:8, R:8, G:8, B:8)
COEF1 |32 hits |Coefficient 1 (T:8, R:8, G:8, B:8)
COEF2 |32 hits |Coefficient 2 (T:8, R:8, G:8, B:8)
COEF3 |32 hits |Coefficient 3 (T:8, R:8, G:8, B:8)

6.2.4 Temporary Registers

Property |Width |Normal usage

TMP1 32 bits [Temp 1 register (T:8, R:8, G:8, B:8 or U:12, V:12)
TMP2 32 bits |Temp 2 register (T:8, R:8, G:8, B:8 or U:12, V:12)
TMP3 32 bits |Temp 3 register (T:8, R:8, G:8, B:8 or U:12, V:12)

These registers can be used to store temporary results in a shading program.

rev. 1.03 08.03.00



129

6.3 Shading Program Format

Format

Fields

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| endl ppu_oper | param

param | a_addr | b_addr | c_addr dest
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Field Bits Description

dest 1:0 Destination address

c_addr 5:2 C bus address

b_addr 9:6 B bus address

a_addr 13:10 A bus address

param 1814  |Parameter field

ppu_oper 22:19 Pixel processor operation

end 23 Shading program end

The program instruction contains seven different fields. Desired values are loaded to the
appropriate fields, depending on the type of command (ppu_oper).

1) end determines the last command of the shading program.

2) ppu_oper determines the executed command:

0 reserved

1 color_op

2 stipple_blend
3 logic_op

4 cread

6 zread

7 zwrite

8 textfetch

9 textfetch_modulate
10 bilin

11 tlogic

12 palette

N.B. opcode 5 isreserved.

3) param contains parameter, depending on command
4) a_addr determines first source bus

5) b_addr determines second source bus

6) ¢_addr determines control bus

7) dest determines destination address

The Pixel Processor processes every pixel of the primitive, which is generated by the
Primitive Processor. Shading program start addressis loaded to register 14, page 149.
Program run terminates when the value of the end field is one (maximum of 32
commands). If the shading program contains ppu_oper which may kill pixels (zr ead,
sti ppl e_bl end ort | ogi c), then program execution may terminate and the Pixel
Processor begins to process a new pixel of the primitive.

rev. 1.03

08.03.00



130

256

128 128 x 128

If MIP-mapping is used, the maximum width of the largest texture map is 512. Thus, the
series of textures for a MIP-map fitsinto a combined texture width of 1024. For 128 x
128 texture, a 256 x 128 surface must be created. Smaller level of detail maps must be
stored to the right of the highest level of detail map. Example of such acaseis above.
Note that the grey areais lost due to memory layout.

If MIP-map is enabled (am and bm bitsin registers 6 and 8), the Pixel Processor uses four
MSB hits from the C (Control) bus to determine what MIP level to use.

rev. 1.03

08.03.00



131

6.4 Shading Instructions

color_op Shading Instructions opcode 1

Description: Handles A and B bus colors with assistance of C (control) bus.
Result.red = A.red + ((B.red - A.red) x C) / 256
Result.green = A.green + ((B.green - A.green) x C) / 256
Result.blue = A.blue + ((B.blue - A.blue) x C) / 256
Result.transp = A.transp + ((B.transp - A.transp) x (C and FOh)) / 256

Special: Note that various parameter combinations are possible; see the example below with
par an=12. The transparency output is computed by only using the 4 topmost bits from
the C bus.
Parameters: 0 00000 If C bus =4 (FIFO) then use the whole transparency value for
blend operation.
1 00001 If Chbus=4 (FIFO) then use 4 L SBs of the transparency for

blend operation.
00010 For transparency component, force blend factor to O.
00100 For color (RGB components), force blend factor to 0.
01000 Swap A and C (control) bus values.
6 10000 If Cbusaddressis8or 9, value on C busis shifted left 4 bits
(0000xxxx - > xxxx0000).

200N

Inputs: A and B buses contain colorsand C bus contains the blend factor.
Outputs: Frame buffer, TMP1, TMP2, or TMP3

Example:

end ppu_oper param a addr b _addr c_addr dest
1 1 12 0 4 1 0

Performs COEFO x FIFO_RGB, and stores the result to the frame buffer. With parameter
0, the Result = A + ((B — A% C) / 256. In the above example, parameters configure the
blending unit to zero C bus and then swap A and C buses which makes Result =0 + ((B —
0) x A) / 256 which is equal to (& B) / 256. In other words, bit 2 and bit 3 of the
parameter field are set (param = 8 + 4 = 12), and this generat@&hecause:

Bit 2: forces color blend factor (C bus) to zero

Bit 3: swaps A bus and C bus values
The original formula of A + ((B - A C)) / 256 therefore becomes:

0+ ((B-0)xA)) /256 =(BxA)/256

Consider the case of swapping the A bus value with C bus value by setting bit 3 of the
col or _op parameter. Note that C bus only carries 8 bits and A bus carries 32 bits. As
col or _op is performed component-wise (in 8-bit fields), each of the 8-bit fields in A
bus is swapped with C bus separately. For instance, if A = 12345678h and C = ABh, the
blue component will have the value:

ABh + ((B.blue - ABh)x 78h) / 256
and green would have:

ABh + ((B.green - ABh)x 56h) / 256
Note that for transparency:
Result.transp = ABh + ((B.transp — ABk)10h) / 256.

rev. 1.03 08.03.00



132

stipple_blend

Shading Instructions opcode 2

Description:

Special:

Parameters:

Inputs:

Outputs:

Example:

Normal color operation command with some additional functions; see Special.

Ifrtr fieldinfranme_node register is set to one, then Pixel Processor killsthe pixels
after comparing st i ppl e_bl end result to theinternal transparency dither mask. If tsk
fieldin ppu_node register is set, pixd iskilled depending on transparency result. Note
that various parameter combinations are possible.

0 00000 If Cbus=4 (FIFO) then use the whole transparency value for
blend operation.
1 00001 If Cbus=4 (FIFO) then use 4 L SBs of the transparency for

blend operation.
00010 For transparency component, force blend factor to 0.
00100 For color (RGB components), force blend factor to 0.
01000 Swap A and C (control) bus values.
6 10000 Vaueon C busis shifted left 4 bits (0000xxxX - > xxxx0000).

=00 R~N

A and B buses contain colors and C bus contains the blend factor.

TMP1, TMP2, or TMP3. With dest value of 0 result is not written to the frame buffer, but
possible pixel kills are proceeded.

end ppu_oper param a addr b _addr c_addr dest
1 2 0 4 0 0 1

Read values from FIFO and COEFO, blends and stores the values after comparing them to
theinternal dither mask.

Seealso:rtr field (bit 0) inf r ame_node (13) register, page 148.

Theinternal transparency dither mask is hardcoded into st i ppl e_bl end; it cannot be
modified. It is completely different from the dither mask defined in the dither (10)
register.

The decision for the Pixel Processor to kill a pixel is made according to the following:

if (raster_transparency ==1 and
((pi xel.transparency shr 4) >
((dithy shr 1 and 1) +
((dithy shr 1 and 1) xor (dithx shr 1 and 1)) shl 1+
(dithy and 1) shl 2+
((dithy and 1) xor (dithx and 1)) shl 3)

)
then kill _pixel;

Scr eenPi xel X and 3
ScreenPi xel Y and 3

di t hx
di t hy

Note that this dither mask comparison is not tied to the stencil bitsin the ppu_node (12)
register in any way.

rev. 1.03

08.03.00



133

The transparency skip parameter in ppu_node register (12) has effect only with the
sti ppl e_bl end instruction. The effect is:

if ((transparency_skip==1) and
((pixel.transparency shr 4)==15))
then kill _pixel

Thisisto kill only the amost fully transparent pixelsif stippleis not wanted.

logic_op Shading Instructions opcode 3
Description: | ogi c_op command performs various logic operations between the A and B bus colors.
Special: Transparency valueis taken from C bus, instead of A bus. If osat fieldinfranme_node

register is one, the result values are clamped between 0-255, otherwise values are looping.
Parameters: 0 00000 A andB

1 00001 A andnotB

2 00010 not A and B

3 00011 not A and not B

4 00100 A xor B

5 00101 reserved

6 00110 reserved

7 00111 reserved

9 01001 max(A,B) (finds higher color value of A and B)

12 01100 A+B

13 01101 A-B

16 10000 not (A and B)

17 10001 not (A and not B)

18 10010 not (not A and B)

19 10011 not (not A and not B)

20 10100 not (A xor B)

21 10101 reserved

22 10110 reserved

23 10111 reserved

25 11001 min(A,B) (findslower color value of A and B)

28 11100 not(A + B)

29 11101 not(A - B)
Inputs: A and B buses; A operand for transparency logic operation is taken from C bus.
Outputs: Frame buffer, TMP1, TMP2, or TMP3
Example:

end ppu_oper param a addr b_addr c_addr dest
0 8 0 8 0 4 2
1 3 4 4 6 6 0

Performs color XOR operation with A texture and FIFO TRGB. Sends result to the frame

buffer.
See also: f rame_node (13) register osat field (bit 1), page 148.
rev. 1.03 08.03.00



134

Note that max (), mi n( ), addition and subtraction are all component-wise operations.
For example:

max(11223344h, 44332211h) = 44333344h
m n(11223344h, 44332211h) = 11222211h
add(11223344h, 44332211h) = 55555555h
sub(11223344h, 44332211h) = 00001133h

For the last subtraction example, we have assumed that the overflow check osat (bit 1)
inframe_node (13) register is set to one, so that the negative results are clamped to
zero.

cread Shading Instructions opcode 4

Description: Reads color value from frame buffer and stores it to the temporary register.

Special: If cmfield in register 13 is set to 1, transparency value will also be read.
There is a Z-buffer mode where the Z value contains one bit of fast clear value. Thisbit is
used to determine on a per-pixel basis whether the pixel is from the current frame or from
the earlier frame. According to thisinformation, zr ead first checksif the fast clear bit is
different from the fast clear current value (f cv) bit in thef r ame_node (13) register. If
itisdifferent, it means that the Z value is not from this frame and should be taken as zero
("fast cleared"). Same hasto apply to cr ead as we do not want to get the color from the
earlier frame, but get black instead. Thef cv bit is changed every frame, and for fast clear
to work properly, EVERY pixel on the screen hasto be drawn every frame. Also, if f ce
inregister 13 issetto 1 and thef cv comparison fails during zr ead, then return the
black value.

Parameters: none

Inputs: Color value from the frame buffer.

Outputs: 32-bit word to any temporary register TMP1-3.

Example:

end ppu_oper param a addr b _addr c_addr dest
1 4 0 0 0 0 1

Reads color value from the frame buffer and stores this value to TMPL.

See also: Register 13, bits 3 and 8, page 148.

rev. 1.03

08.03.00



135

zread Shading Instructions opcode 6
Description: Kills pixels according to stencil mask, depth compare and fast clear.
Special:
If (ppu_node red.stencil == 1 and
fetched_stencil != ppu_node_reg. sok)
then kill _pixel
If (frame_node.fce == 1 and
fetched. fast_clear != frane_node. fcv)
then kill _pixel
If Z equal compare (register 13, bit 2)==1 then Z equal compare will aso kill pixels that
have the same Z value as the one in the Z buffer.
Parameters: none
Inputs: Bits[23:0] of A busfor z-value, even for z buffer modes less than 24 hits.
Outputs: If the pixel isvisible, value on A busis written according to destination parameter. Valid
destinations are TMP1-3.
Example:

end ppu_oper param a_addr b_addr c_addr dest

1 6 0 10 0 0 0

Compare FIFO Z (addr value 10) with z value from z-buffer, and skip the rest of the
shading program if pixel is not visible.

For more information on fast clear, please refer to the cr ead command above. Stencil
mask is very similar to fast clear, except that it can kill apixel evenif the pixel isvisible
after aZ compare operation. For example in atypical flight simulator game, if the pixels
of the cockpit has stencil turned on, it is not necessary to redraw the cockpit in every
frame, asit remains untouched from frame to frame.

rev. 1.03

08.03.00



136

Zwrite Shading Instructions opcode 7

Description: Stores the z, stencil and f cv values of a pixel, depending on the z-buffer mode (i.e. bitsin
f ranme_node (13) register).
Thefast clear hit is generated by reading from thef cv hit (bit 4 of register 13). And the
stencil bit is generated from the old stencil value in the Z-buffer modified with the current
stencil operation (bits 9-10 of register 12).
Typicaly thea_addr for zwr i t e isthe Z-FIFO; in this case, the stencil values are
written from internal registers. If the stencil operationsnop or i nvert are used then the
Pixel Processor code must also include zr ead in order to initialize these registers
properly. If some other source is used, the stencil and fastclear bits come from that source
directly. If the source is one of the TMP registers and the zr ead operation is used to
initialize the TMP register, then the register will have correct stencil etc values deposited
by the zr ead operation; although it is possible to change the values with other operations
between zread andzwri t e.

Special: -

Parameters: none

Inputs: A bus, the z value to be written.

Outputs: none

Example:

end ppu_oper param a addr b_addr c_addr dest
1 7 0 10 0 0 0

Write FIFO Z to the z-buffer.

See also: f ranme_node (13) register, bits 3, and 5-7; page 148.

rev. 1.03

08.03.00



textfetch

137

Shading Instructions opcode 8

Description:

Special:

Parameters:

Inputs:
Outputs:

Example:

See also:

Makes a texture fecth.

U and V are organized on the bus as follows:

U[11:0] =A bus[23:12]

V[11:4] =A bus[7:0]

V[3:0] =A bus[11:8]

Note that the MIP-map level is taken from the upper 4 bits of C bus. Refertobi | i n
instruction (opcode 10).

When a/ bmbit (A/B texture MIP-map enable) in a/ bt ex_conf 2 register (6 or 8) is
one, the MIP level can be determined by reading it from the C bus of the Pixel Processor.
Even when MIP enableis0, it is still possible to usetheni p_add bit in the instruction to
force one level of MIP-map.

00001 Add one bit to V coordinate.

00010 Add one bhit to U coordinate.

00100 Add one to the MIP-map level.

01000 Select A/B texture settings. A=0, B=1.

A DNPE

Bits[23:0] of A bus. Bits[7:4] of C bus

32-bit TRGB color that can be stored to any temporary register TMP1-3.

end ppu_oper param a_addr b_addr c_addr dest

0 8 0 8 0 4 1

1 1 0 5 4 0 0

Blends A texture with FIFO TRGB, with the amount in C bus.
Sends the result to the frame buffer.

at ex_conf 1 (5) and at ex_conf 2 (6) registers, pages 142 and 143, and
bt ex_conf 1 (7) and bt ex_conf 2 (8) registers, page 144.

rev. 1.03

08.03.00



138

textfetch_modulate Shading Instructions opcode 9

Performs atexture fetch based on the A bus values; uses the fetched 16-bit value as
follows:

Description:

Bits 4:0 contain the signed horizontal modulation vector.
Bits 9:5 contain the signed vertical modulation vector.
Bits 15:10 contain the color index that can be used later to address the pal ette.

M odul ates texture components on the B bus.

As aresult operation writes modulated component and color index on result bus:
Res 31:26 color index (5:0)
Res 25:24 color index (5:3)
Res 23:12 modulated U component(11:0)
Res 11:4 modulated V component(7:0)
Res 3:0 modulated V cmponent(11:8)
Special: nodul at i on (11) register contains the horizontal and vertical modulation coefficients.
1 00001 Add onebit to V coordinate.
2 00010 Add one bit to U coordinate.
4 00100 Add oneto the MIP-map level.
8 01000 Select A/B texture settings. A=0, B=1.

Parameters:

A bus, containing the U and V coordinates for the source texture.
B bus, containing the U and V coordinates to be modulated.

Inputs:

Outputs: TWMPL, TMP2, or TMP3.

Example:

end

ppuU_oper

param

a addr

b_addr

c_addr

dest

9

0

8

9

0

8

0

5

0

0

—|O|O

4

0

6

4

0

OIN|F-

Modulates BTU and BTV coordinates with the vector fetched with ATU/TV components
texture, and the modulation vector from nodul at i on (11) register. Write the result to
the TMP1. Makes texture fetch using modulated component from TMP1 and stores TRGB
value to TMP2. Combines color values from TMP2 and FIFO to the frame buffer.

See also: nodul at i on (11) register, page 147.

rev. 1.03 08.03.00



bilin

139

Shading Instructions opcode 10

Description:

Special:

Parameters:

Inputs:
Outputs:

Example:

Performs bilinear interpoation inside 2 x 2 texture pixel matrix that isrelativeto U and V
coordinateson A bus. Bi | i n worksthe sameway ast ext f et ch except that it
performs bilinear filtering for the texel.

Four LSB bits of U and V are used to perform blending. Note that the MIP-map level is
taken from the upper 4 bits of C bus. Also, the bits used for blending are the next four
which are not used in texture address cal culation; which bits these are depends on SUBS
and MIP parameters.

When ambit (A/B texture MIP-map enable) in a/ bt ex_conf 2 register (6 or 8) isone,
the MIP level can be determined by reading it from the C bus of the Pixel Processor. Even
when MIP enableis 0, it is still possible to usetheni p_add bit in the instruction to force
one level of MIP-map.

0001  add one hit to V-coordinate (not used)
0010  add one hit to U-coordinate (not used)
0100 add oneto MIP level

1000  select a/b texture settings

0 ANBE

Bits[23:0] of A bus.

Interpolated 32-bit TRGB color, ready to be stored to temporary register TMP 1-3.

end ppu_oper param a addr b_addr c_addr dest
0 10 0 8 0 0 1
1 4 0 1 0 0 0

Fetch bilinear filtered texels, and store to TMP1. Writesbi | i n result from TMP1 to the
frame buffer.

When using MIP-mapping, the MIP-map is selected with the upper 4 bits of the value on
C bus.

7 6 5 4 3 2 1 0

m m m m n n n n

For example a C-bus value of 8 would select MIP-map 0 (the main texture) because the
m-bits are zero, and a C-bus value 22 (=16h) would select MIP-map 1, and so on. The
reason for using the upper and not lower bits to select the level isthat the lower bits are
needed, for example, for trilinear blending between two M1P-map levels.

We consider here the popular method of trilinear filtering as an example. Note that
trilinear filtering concerns the bilinear texture fetch instruction only, and not the point-
sampled texture fetch instruction. When performing trilinear filtering, two texture fetches
are performed. The texture fetch instruction has a parameter that adds 1 to the MI1P-map
level. For example, a C-bus value of 22 (16h) becomes 38 (16h + 10h =26h) and this
selects the next MIP-map. In practice, the Pixel Processor code would look like the
following:

; fetch first texture

end ppu_oper param a addr b_addr c_addr dest

0 10 0 8 0 4 1

rev. 1.03

08.03.00



140

; fetch next MIP-map level

end ppu_oper param a addr b_addr c_addr dest

0 10 4 8 0 4 2

; blend the two textures using the lower 4 bits of MIP-map interpolator, and output to
frame ; buffer

end ppu_oper param a addr b _addr c_addr dest

1 1 1 5 6 4 0

Note that the combination of different shading instructions such as the examples above
can implement very versatile and advanced 3D shading and filtering algorithms.

tlogic Shading Instructions opcode 11

Description: Same as| ogi ¢, opcode 3, with the following exeptions:

Special: The normal logic operation is proceed and if the TRGB result is zero then pixel iskilled.

Outputs: TMP1, TMP2, or TMP3. With dest value of 0 result is not written to the frame buffer, but
possible pixel kills are proceeded.

palette Shading Instructions opcode 12

Description: Reads the color from the internal palette RAM using the C bus as index.

Special: Palette mask and pal ette base values are specified in palette_base (15) register. This
instruction uses the same A/B palette parameters, and is not limited to the B texture
parameters. Result = palette[ (C bus and b_palmask) or b_palbase)]

Parameters: 8 01000 Select A/B texture palettebase register A=0 B=1

Inputs: 8-bit index from C bus.

Outputs: TMP1-3

Example:

end ppu_oper param a addr b_addr c_addr dest
0 12 0 0 0 4 1
1 8 0 5 0 0 0
Read the color from the palette using FIFO transparency as index, and store the result to
TMPL.
Blends this palette with COEFO register and sends the results to the frame buffer.
See also: palette_base (15) register, page 149.
rev. 1.03 08.03.00



6.5 Pixel Processor Registers

141

Register address Offset  |Register name
1 0004h |coef_reg0
2 0008h |coef_regl
3 000Ch |coef_reg2
4 0010h |coef_reg3
5 0014h |atex_confl
6 0018h |atex_conf2
7 001Ch |btex_confl
8 0020h |btex_conf2
9 0024h |base_addr
10 0028h |dither
11 002Ch |modulation
12 0030h [ppu_mode
13 0034h |frame_mode
14 0038h [ppu_code_start
15 003Ch |palette_base
[coef_reg0 [register 1 |offset 0004h
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
transp red
green blue
5 14 1B 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
blue 7:0 Coefficient 0 blue
green 15:8 Coefficient 0 green
red 23:16 Coefficient 0 red
transp 31:24 | Coefficient 0 transparency
[coef_regl [register 2 |offset 0008h
Format 3 80 29 28 27 2 25 24 2 2 21 20 19 18 17 16
transp red
green blue
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
blue 7:0 Coeftficient 1 blue
green 15:8 Coefficient 1 green
red 23:16 Coefficient 1 red
transp 31:24  |Coefficient 1 transparency
rev. 1.03 08.03.00



142

[coef_reg2 [register 3 |offset 000Ch
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
transp red
green blue
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
blue 7:0 Coefficient 2 blue
green 15:8 Coefficient 2 green
red 23:16 Coefticient 2 red
transp 31:24  |Coefficient 2 transparency
[coef_reg3 [register 4 |offset 0010h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
transp red
green blue
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
blue 7:0 Coefficient 3 blue
green 15:8 Coefficient 3 green
red 23:16 Coefficient 3 red
transp 31:24  |Coefficient 3 transparency
atex_conf1 register contains the base address for A texture, measured in units of 2048
bytes and texture height in memory in 32 pixel blocks.
|atex_conf1 |register 5 |offset 0014h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| amhig
| abaseb
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
abaseb 13:0 A texture base address in 2048 byte blocks
amhig 21:16 | A texture height in 32-pixel blocks

rev. 1.03

08.03.00



[atex_conf2 [register 6 |offset 0018h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
asubs | ayl Jaxl | am | ad | amode
aphig | apwid
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
asubs 31:29 | A texture sub pixels
ayl 26 ayloop
axl 25 axloop
am 24 A texture MIP-map enable
ad 20 A texture data same on both memory banks
amode 1916  |A texture mode
aphig 10:8 A texture height in pixels
apwid 2:0 A texture width in pixels
asubs

A texture subpixel accuracy. Determines how many bits are reserved for subpixels; the
rest are for the actual pixels. For example 5hits for subpixels and 7bits for actual pixels
givesatotal of 12bits.

ayl, axl

Ayl controls AV component |ooping/clamping

AxI controls AU component |ooping/clamping

If texture looping is enabled ax / yl = 1 texture coordinate larger than the size of the
texture will be wrapped around.

If acoordinateis clamped ax / yl = 0 texture coordinate larger than the size of the texture
will be forced to zero, and the texture color fetched from this location will be used as a
result.

am

A texture MIP-map enable. When amis one, the MIP level can be determined by reading
it from the C bus of the Pixel Processor. Even when MIP enableis 0, it is still possible to
use the mip_add bit in the instruction to force one level of MIP-map.

ad
A-texture double. Pixels are interleaved in memory banks; this bit enables both external
memory banks storing the same texels.

This dual bank mode is used to get faster access to texture through the two separate 32-bit
buses which take advantage of reducing the access latency at the 64-bit SDRAM
interface. If the ad bit is one and texture is uploaded so that the even and odd texels are
stored to both buses respectively, V S25203 can use faster accesses to fetch the texture
without the need for possible texel swapping inside the Pixel Processor. This feature,
together with the other more advanced features in V S25203, are quite complex to support
in current industry standard 3D APIs. They are used mainly in arcade and specialized
applications. A practical way to take advantage of this feature is to have texture fetches
twice as wide, where even and odd pixels are cloned horizontally.

rev. 1.03

08.03.00



144

amode

A texture mode:

0000 8 bit index

0001 4 bit index

0100 RRRRRGGGGGGBBBBB

0101 TRRRRRGGGGGBBBBB

0110 TTTTRRRRGGGGBBBB

1000 TTTTTTTTRRRRRRRRGGGGGGGEGEBBBBBBBB
1001 AAAAAAAAVVWVVVWVYYYYYYYYUUUUUUUU
1010  YYYYYYYYWWWWWWYYYYYYYYUUUUUUUU
T signifies transparency, R red, G green and B blue, respectively.

apwid, aphig
A texture pixel width; A texture pixel height. The following list contains calcul ated values
for different texture map sizes:

000 16
001 32
010 64
011 128
100 256
101 512
110 1024
111 2048

Seven is the maximum value for this field, which gives the maximum texture map size of
2048 times 2048 pixels.

|btex_conf1 |register 7 |offset 001Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| bmhig
| bbaseb
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

bbaseb 13:0 B texture base address in 2048 byte blocks

bmhig 21:16  |B texture height in 32-pixel blocks

See atex_confl.

rev. 1.03 08.03.00



145

[btex_conf2 [register 8 |offset 0020h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
bsubs | byl |bxl | bm | bd | bmode
bphig | bpwid
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

bsubs 31:29  |B texture sub pixels

byl 26 byloop

bxl 25 bxloop

bm 24 B texture MIP-map enable

bd 20 B texture data same on both memory banks

bmode 19:16 B texture mode

bphig 10:8 B texture height in pixels

bpwid 2:0 B texture width in pixels

See atex_conf2.
[base_addr [register 9 |offset 0024h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

zbaseb
cbaseb
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

cbaseb 13:0 Frame buffer base address in 2048-byte blocks

zbaseb 29:16 Z-buffer base address in 2048-byte blocks

base_addr register contains the base address for Z-buffer and graphics memory.
rev. 1.03 08.03.00




146

[dither [register 10 |offset 0028h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| d7 | dé6 | o5
ds | d4 | d3 | d2 | d1 | do
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
do 2:0 Dither 0
di1 5:3 Dither 1
d2 8:6 Dither 2
d3 11:9 Dither 3
d4 14:12 Dither 4
d5 17:15 Dither 5
d6 20:18 Dither 6
d7 23:21 Dither 7

VS25203 uses a4 x 4 ordered dither matrix. This register describes the dither mask; only
bits 0:23 are significant. Dither values of 0:7 are located in the dither mask as follows:

DITHERO | DITHER2 | DITHER 4 | DITHER 6

DITHER1 | DITHER3 | DITHERS5 | DITHER 7
DITHER 4 | DITHERS5 | DITHERO | DITHER 2

DITHER6 | DITHER7 | DITHER1 | DITHER 3

Dithering is enabled by default, where bit 4 (nd: no-dither bit) of ppu_node (12)
register is reset to zero.

Dithering is controlled by software functions in the display driver. If zero mask values are
passed to the functions, dithering has no effect. The suggested mask value in VS25203 is
007E95A0h; thisisapopular value in dithering literature, but most large random values
will have similar results.

The theory behind dithering is that noise is added to the pixel bits below a certain fixed

binary point and then the lower order bits are discarded. For example, in RGB 5:6:5 frame

buffer format, 3-bit values from the dither matrix are added to the 3:2:3 lower order bits of

the pixel value according to the pixel's x and y coordinates. The pixel value then has its
3:2:3 lower order bits truncated before it is written back to the frame buffer. Note that the
green component has less bits since human vision requires more green resolution in the
pixel value. This is the reason for the usslof bit (bit 5, shift-green-dither-value-right-
by-one field) of the ppu_mode (12) register to control a one-bit right shift of the dither
value before the value is added to the green component.

rev. 1.03

08.03.00



147

[modulation [register 11 |offset 002Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
modvy modvx
modhy modhx
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
modhx 7:0 Horizontal X modulation coefficient
modhy 15:8 Horizontal Y modulation coefficient
modvx 23:16 Vertical X modulation coefficient
modvy 31:24 | Vertical Y modulation coefficient
Thisregister describes coefficients used to rotate modulation vector which is stored in
texture map for the purpose of bump mapping. Thisregister is only used with
t ext f et ch_nodul at e command of the Pixel Processor, see page 138.
[ppu_mode [register 12 |offset 0030h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
|st_0per | sokl s | tsk |shr | nd |
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
nd 4 No dither
shr 5 Shift green dither value right by one
tsk 6 Transparency skip
S 7 Stencil
sok 8 Stencil reference value
st_oper 10:9 Stencil operation
nd

No dither; disables the internal dithering logic in V S25203.
shr

Shift green dither value right by one. To make dithering work correctly in 16-bit frame
buffer mode where the green component has 6 bits, while the red and blue components

have only 5 hits.
sok
Stencil reference value used in zr ead instruction

rev. 1.03

08.03.00



148

tsk
Transparency skip. It only has effect withthest i ppl e_bl end shading instruction
(opcode 2). The effect is:

if ((transparency_skip==1) and
((pi xel.transparency shr 4)==15))
then kill _pixel

Thisisto kill only the aimost fully transparent pixelsif stippleis not wanted.

S

Stencil. Enable(1)/disable(0) pixel kill by stencil inzr ead.
st_oper

Stencil operation:

00 no operation

01 set stencil mask

10 clear stencil mask

11 invert stencil mask
|frame_mode |register 13 |0f-fset 0034h
Formﬂt 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| em| zm | fov | fee | zeq| osat| rtr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
rtr 0 Raster transparency
osat 1 Overflow saturate
zeq 2 Z equal compare
fce 3 Fast clear enable
fcv 4 Fast clear current value
zm 7:5 Z memory mode
cm 8 C memory mode
rtr

Raster transparency; it hasto be set to one for thest i ppl e_bl end command to do
stippling. Refer tothe st i ppl e_bl end command for more details.

osat

Overflow saturate; when it is set it causes the possibly overflowing operations (dithering,
logic unit add/subtract) to saturate their results.

zeq

Z equal compare; if this bit is one, Zcompare will ALSO kill pixelsthat have exactly the
same Z value asthe onein the Z buffer.

fev

Fast clear current value; refers to the description of cr ead command (opcode 4).

rev. 1.03

08.03.00



zm

Defines the z memory mode:

000 Z777777777777777Z,

001 777777777777777F,

010  ZZ777777777777FS,

011 000000FSZZ7777777777777777777777,
Z signifies z-value, Fisfast clear and Sis stencil.

cm

Defines the color memory mode:

0 RRRRRGGGGGGBBBBB,

1 TTTTTTTTRRRRRRRRGGGGGEEGBBBBBBBB,

T signifies transparency, R red, G green and B blue, respectively.

149

[ppu_code_start |register 14 |offset 0038h
FOl‘mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| start_addr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
start addr 4:0 Pixel processor code start address
The start address of the shading program for the Pixel Processor unit (ppu) is stored in the
ppu_code_start register.
[palette_base |register 15 |offset 003Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
b_palmask b_palbase
a_palmask a_palbase
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
a_palbase 7:0 A texture palette index base
a_palmask 15:8 A texture palette index mask
b_palbase 23:16  |B texture palette index base
b_palmask 31:24  |B texture palette index mask

palette_base register contains information used in indexing the internal palette memory

of VS25203. It uses the following formula:
Result = palette] (C_bus and palmask) or palbase]

See also pal et t e command on page 140.

rev. 1.03

08.03.00



150

6.6 Pixel Processor Unit Memory Blocks

The Pixel Processor contains a program memory containing 32 24-bit words. This
memory is mapped to the address range 128-159.

The Pixel Processor aso contains memory for storing the color palette used in some of the
texture map modes. This memory is mapped to the address range 256-511.

6.7 VS_VP Bump Mapping Programming Guidelines

The bump mapping modulation matrix is a 2D rotation matrix. It rotates the bump map
vectors so that the effect of rotating atriangle (while the environment map staysin the
same orientation) can be counteracted. The valuesin the two vectorsinside the matrix are
signed 8-bit integers; and the two vectors should be in 90 degrees angle (i.e. mutually
orthogonal, with dot product value of zero):

The bumpiness effect of a bump map can be scaled by using smaller modulation valuesin
the matrix. Also, the bump map data loaded into V S25203 should bein X,Y signed delta
format (bits 0..4 for X, bits5..9 for Y). Bump mapping is inherently slow due to random
accesses to texture. But the second (conventional diffuse) texture can be stored into the
bump map as a 6-hit paletted texture. The palette shading instruction (opcode 12) can then
be used to fetch the color that matches the palette.

For a 3D artist to generate a bump map which looks visually redlistic, it is best to use a

grey scale map with white presenting high. Also, it works best if the map does not contain
regular patterns (like text, or logo) as the possible artifacts are more visible on maps like

these. One parameter to try while generating a bump map in Photoshop™ is the
smoothness (blur) parameter; by trying different versions of the map an artist can find a
map that looks best for the application.

The VS_VP bump mapping method always requires a light map to get the effect of a
bump surface. Bump + environment map and bump + diffuse map are both supported. The
difference between these two is in the way of calculating light map coordinates. In bump

+ environment map, the light map (environment map in this case) coordinates are
generated on the fly from the vertex normal vectors. That is why the environment seems

to reflect from the surface, and as we distort the environment map coordinates per pixel,
we get the effect of a bumpy surface. In bump + diffuse map, the light map coordinates

are static (e.g. in Id Software’s Quake™); i.e. the light map does not move or slide on the
surface.

It is possible to use the same VS_VP bump mapping method to make diffuse light maps
look bumpy, but the benefit of having two separate maps is not significant anymore as
these two maps could have been pre-rendered into a single normal texture map for actual
use.

Depending on the object, the VS_VP bump mapping modulation matrix works best if it is
the same matrix for the whole object. If a modulation matrix is chosen for each individual
triangle, we would get discontinuity at the triangle edges. The reason is that we cannot
interpolate the matrix over the triangle. The modulation matrix should contain the major
horizontal and vertical mapping angles of the bump map on the object. A simple example
is an object that has a bump map applied with plane mapping. In this case, the orientation
of the 2D plane that is used to access texture coordinates for the bump map should be put
into the modulation matrix, with a 90 degree angle between the horizontal and vertical
vectors.

rev. 1.03 08.03.00



151

Take the example of a car racing game with a car in a blue sky environment, if we intend
to have bumps on the racing car surface, the best way to do so isto create a bump texture
with the original texture combined to the same map (e.g. car number, stickers etc as a 6-
bit palette index). We then use this map to modulate the surrounding sky environment
map coordinates:

Atexture = Bump map

Btexture = Sky environment map

The following steps are then carried out through shading instructions for the Pixel
Processor:

1. textfetch_nodul ate a Atexture, b:Btexture -> TWP1

Through this step, we will have bump mapped sky environment map color in TMP1. We
a so have the 6-bit index (from the bump map) in TMP1_alpha arranged in the bit order of
54321054. This bit layout makes it easier to use TMP1_alpha, for example, to carry out
palette look-up or to use it as a blending factor.

2. textfetch a TMP1 -> TMWP1
This instruction fetches color information from texture memory using modul ated texture
component from TMP1 writing the result to TMP1 for further use.

3. palette c: TMP1_al pha (address 5) -> TMP2

At this point we have the diffuse color of the surfacein TMP2 and specular color in TMPL.
Next thing to do isto add these colors together (with saturation turned ON; register 13 bit
1).

4. | ogic_op 12(atb) aTMPLl, b:TMP2 -> screen
With the above three-instruction pixel code, the intended combined bump/environment
mapping effect is realized.

rev. 1.03

08.03.00



152

7. Clock Synthesis and Control

7.1 Overview

V S25203 contains two phase-locked-loop (PLL) frequency synthesizers. They generate
clock signals for the processor and for video. VV S25203 uses an external crystal, whichis
connected between the Osc_out and Osc_in pins. The frequency of the crystal is
14.3181818 MHz. Both synthesizers can be programmed separately for up to 200MHz.

7.2 Programming

The frequency synthesized by each PLL is determined by the following equation:

m_coef +2 _xF
(n_coef + 2)>< 27— ’

E)(/Y' =
where:

n_coef, m_coef, r_coef = clock coefficients
Fose = quartz crystal or external clock (MHz).

The quartz crystal frequency Fosc is 14.3181818 MHz. The integer values of n_coef ,
m_coef andr _coef should be between the following values:

n_coef: 0-127 (0-32 recommended)
m coef: 0-127
r_coef: 0-3

For the best clock stability, there are some guidelines for programming the on-chip
frequency synthesizer. The most stable operation for the PLL is achieved when the phase
detector frequency in the synthesizer is as high as possible. This condition requires that
then_coef counter valueisas small as possible. The next guideline isto have high VCO
(voltage controlled oscillator) frequency, preferably in the 150-300 MHz range. This
condition reguires that the valuer _coef isaslarge as possible.

Coefficients are defined in core_cl k_cf g (16) register and vi deo_cl k_cf g (18)
register on pages 28 and 33. The following table contains examples for some F, values.
Note that the actual frequency may vary slightly.

rev. 1.03

08.03.00



153

Desired Frequency | m_coef | n_coef | r_coef | F,,, (MHz)
25 125 7 3 25,2557
35 86 7 2 35,0000
45 111 7 2 44,9432
50 125 7 2 50,5114
65 107 4 2 65,0284
75 40 0 2 75,1705
85 117 8 1 85,1932
95 118 7 1 95,4545
105 115 6 1 104,7017
115 110 5 1 114,5455
125 120 5 1 124,7727
135 111 4 1 134,8295
145 119 4 1 144,3750
155 85 2 1 155,7102
165 113 3 1 164,6591
175 120 3 1 174,6818
185 101 2 1 184,3466
200 110 2 1 200,4545

Caution: Unsuitable clock frequency parameters may cause permanent damage to the
device.

rev. 1.03 08.03.00



154

8. VGA Core

8.1 Introduction

VS252 VGA Core is 100% IBM® VGA compatible, and has extensions for supporting
SVGA modes with higher refresh rates and larger screen dimensions. The VGA Core is
highly integrated circuit, taking full advantage of PCI and refresh logic providing
maximum bandwidth from bus to memory and from memory to DAC. Internally, the

VGA core is divided, as traditionally, into two components: host and video interfaces, see
Figure 8.1-1 below. Frame buffer, the on-board video memory, is shared with other units.
The host interface communicates with PCI Controller and takes care of memory writes,
reads and I/O mapped register access. The video interface is a complex state machine,
which carries the data flow from the memory to the DAC. The video interface operation
can be subdivided into alphanumeric and graphics modes.

PCI Controller

VGA Core

> Host Interface

Frame Buffer

Video Interface
(Refresh)

DAC

Figure 8.1-1. VGA Core external interfaces.

As mentioned, VS252 VGA Core does not include just a VGA. It optimizes indexed
256-color modes in a way that allows the full potential of PCI bus to be harnessed.
Acceleration is provided for standard VGA mode 13h and VESA linear 256 color modes.

rev. 1.03 08.03.00



155

8.2 VGA Memory and Register Mapping

8.2.1 Introduction

During system startup IBM compatible PC's memory is organized like in the Table 8.2.3-
1. VGA memory window is located at memory range A0O0O0Oh-BFFFFh, BIOS ROM is
located in memory range CO000h-C7FFFh and registers are mapped in the I/O space
registers from 3B4h to 3Dah and into PCI aperture’s shadow area. Decoding of the I/O
and the memory addresses can be disabled from the PCI configuration space.

8.2.2 VGA Register mapping

VGA registers are mapped in 1/O space locations from 3B4h to 3DAh. Table 8.2.2-1
describes the VGA register map. Location of CRTC00-CRTC45, FEATCTRL and
INPUTSL1 registers are dependent of the MISCOUT register’s bit 0. When MISCOUT bit
0 is ‘1", these registers are mapped into ports 3Dxh, otherwise into ports 3Bxh. Mapping
of the other registers is fixed. The I/O space decoding can be disabled by setting PCI
configuration space register 4 bit 0 to zero.

Accessing of VGA registers is not as straightforward as accessing the memory mapped
registers of the other units. CRTC, Graphics and Sequencer Registers are indexed
registers, which are accessed by writing register index into index port (for example
CRTCINDEX) and then writing the data into the data port (CRTCDATA). Writing an
indexed register can be done with two 8-bit operations or by a singe 16-bit write, where
the index is located in the low-byte and the data in the high byte. Reading an indexed
register must be done by first writing the index and then reading the data. CRTC registers
from 0 to 7 can be locked from writing by CRTC11 bit 7 (reading of them is still
possible). CRTC registers from 40 to 45 (extended registers) can be written only if PCI
apertures register 21 (Feature Register) bit 3 is ‘1’. All the other indexed registers can be
read and written all the time.

General Registers, MISCOUT, FEATCTRL, INPUTSO and INPUTS1 are accessed
directly by reading and writing their corresponding I/O port. Input Status registers are
read only registers, while MISCOUT and FEATCTRL are read/write.

Attribute registers are accessed by first reading INPUTS1 register and then writing the
attribute register index into port 3COh and then writing the data into 3COh. If the bit 5 of
the index is not set, the refresh logic does not have access into attribute registers, and the
screen will be black. If the bit 5 of the index is set, the refresh can access the palette and
attribute registers all the time. Attribute register data can be read from the port 3C1h and
the index can be read from port 3COh.

Color palette can be accessed by first writing the index into 3C8h and then writing red,
green and blue values sequentially into port 3C9h. The index of the color palette is
incremented after writing the blue component. Thus the whole 256-color palette can be
written by writing first the index and then writing all 768 color component values into
port 3C9h. The read operation is similar. The CPWADDR can be read, but the
CPRADDR can not. CPSTATE is read only port, and CPMASK can be directly read and
written. This is the basic operation of writing the 256-indexed color palette. It is not
possible to write only red and green components of the color palette register, but the
whole RGB value must be written before the actual palette register is updated.

rev. 1.03

08.03.00



156

VGA memory and /O space can be accessed through PCI aperture. Since PCl apertures
are relocatable, VGA can be used without fixed 1/0O and memory ranges. Memory mapped
VGA registers, called shadow registers, are located in PCl apertures register space at
address 50h. This means, that each VGA register can be accessed like using the normal
VGA, but instead of making an 1/0 write/read to a port 3XXh, one makes a memory
write/read to address 50 + (3XXh-3COh). For example, if one wants to write CRTC
register index, one makes a byte write to address 64h (50h + 3D4h-3C0h) in the memory
mapped register space. The value of Miscellaneous Output Register does not affect the
memory aperture register mapping. Otherwise, the behavior of the shadow registers is
similar to their behavior in the 1/0O space.

1/0 ADDRESS | OFFSET | WRITE REGISTER | READ REGISTER
3B4 64h CRTCINDEX CRTCINDEX
3B5 65h CRTCDATA CRTCDATA
3B6
3B7
3B8
3B9
3BA 6Ah FEATCTRL INPUTSL
3BB
3BC
3BF
3C0 50h ATTRIDX ATTRIDX
3C1 51h ATTRDATA
3C2 52h MISCOUT INPUTSO
3C3
3C4 54h SEQINDEX SEQINDEX
3C5 55h SEQDATA SEQDATA
3C6 56h CPMASK CPMASK
3C7 57h CPRADDR CPSTATE
3C8 58h CPWADDR CPWADDR
3C9 59h CPDATA CPDATA
3CA 5Ah FEATCTRL
3CB
3CcC 5Ch MISCOUT
3CD
3CE 5Eh GFEXINDEX GFXINDEX
3CF 5Fh GFXDATA GFXDATA
3D0
3D1
3D2
3D3
3D4 64h CRTCINDEX CRTCINDEX
3D5 65h CRTCDATA CRTCDATA
3D6
3D7
3D8
3D9
3DA 6Ah FEATCTRL INPUTSL

Table 8.2.2-1. VGA Register Mapping.

rev. 1.03

08.03.00




157

8.2.3 VGA Memory Mapping

VGA memory is mapped in 80x86 real mode as described in the Table 8.2.3-1. The
alternative method for accessing the VGA memory is through the PCI memory apertures,
which provide direct access to the frame buffer. The physical address (bus address) of the
linear frame buffer can be obtained from the PCI configuration space register 4.

VGA memory space decoding is enabled at boot time, and can be disabled by setting PCI
configuration space register 21 bit 0 to zero. Possible maps are from A0000h to BFFFFh,
from A000Ch to AFFFFh, from BO0O0Oh to B7FFFh and from B8000h to BFFFFh. The
map used is selected from GFX6 bits 2 to 3. When the whole 128kb memory window is
used, the addresses over BOOOOh are aliased to memory space starting at AO00Oh, unless
the bit 6 of CRTCA41 is set. Writes outside the memory map are discarded by the PCI
interface. Writes through the VGA memory window can be disabled by MISCOUT
register’s bit 1.

When data is written through the VGA memory space, it is handled by the VGA host
interface. There are several host interface configurations, which determine the format in
which the data is actually written to the frame buffer. There are four different write modes
and two read modes combined with several control registers, for example plane and bit
masks that make the VGA host interface rather complex. The most important
configuration registers are Graphic Controller Registers and Sequencer Register 2 and 4.

In linear modes, VGA host interface is bypassed and data is written to memory without
modifications. This can be done either by enabling the VGA linear mode in the VGA
memory window, or by writing the data directly to the frame buffer through PCI
apertures. In the linear mode, each byte represents index to the 256-color palette. Linear
host interface is enabled by CRTCA41 bit 3. Refresh logic can be also configured in linear
mode by setting refresh to standard VGA mode 12h byte addressing mode and enabling
64-bit sequencer model by setting CRTC41 bit 4 to ‘1.

Memory Explanation

FE0000- Shadow ROM BIOS

10000-FDFFFF| Extended menyor

FO0000 Planar BIOS

E0000 Eyansion BIOS and motherboard video BIOS

D8000 Voice Communication BIOS/LIM EMS page map
area

D0000 Network BIOS

CC000 LIM EMSpage ma area

C8000 Hard disk BIOS

C0000 VGA BIOS

A0000 VGA Memory Window

00600 §stem RAM

00400 BIOS Data Area

00000 Interrpt Vector Tables

Table 8.2.3-1. IBM PC Memory Layout during system startup.

rev. 1.03

08.03.00



158

8.3 VGA Subsystem Configuration

VGA Subsystem can be enabled and disabled using PCI configuration space register 21,
which provides four bits to control the state of the VGA Core. See the Table 8.3-1 below.
The functionality and of these bits is described in table. The boot time configuration
corresponds the IBM VGA setup where extension registers are hidden and VGA decoding

is enabled.

Feature register bit 0 activates the VGA 1/0O and memory range decoding. At boot time the
V GA decoding is enabled by default. Feature register bit 1 selects between VGA and 3D
refresh. VGA refresh is used for 256 color or less output and 3D refresh is used for true-
and high-color output. Unless the bit 2 of the Feature register is set, the selection between
VGA and 3D refresh changesiif these registers are written. Feature register bit 3 enables
writes to extended VGA registers. The extended registers (CRTC40-CRTC45) can be read
al thetime.

bit

Explanation

Reset
value

3

VGA extension enable
0 enables using of extended VGA registers
1 extension registers are also available

0

V GA refresh select lock
0 selection of refresh registers active
1 selection locked

VGA refresh select

0 3D video refresh registers used

1 VGA refresh registers used
Selects 3D/V GA video refresh control. This bit changesiits state
automatically if VGA or 3D refresh registers are accesses, unless
the select lock (hit 2) is active

V GA decode enable
Activates the decoding of the standard VGA memory and 10
ranges.

Table 8.3-1. PCI Configuration space register 21, Feat ur e register.

rev. 1.03

08.03.00




159

8.4 VGA Clock Configuration

8.4.1 Introduction

VGA host and video clock is the same as system video and system core clock. The value
for the system core and video clocks can be calculated as:

Clock Configuration Register | Coefficient
Bits 14-15 r_coef

Bits 7-13 m_coef
Bits 0-6 n_coef

m_coef +2

Fo = (n_coef +2)x 27— *Foxe

our

Fosc isthe frequency of external clock, usually 14.318MHz.

WARNING! Unsuitable clock parameters may cause permanent damage to the device.

8.4.2 Host Interface

V GA host interface clock is same as system Core Clock. Thisis defined in PCI
configuration space register 16, Core Clock Config. See general clock programming
guidelines for programming this register.

8.4.3 Video Interface

Video clock is derived from the system video clock, which is set from PCI configuration
space register 18. If VGA refresh is enabled, the system video clock can be set indirectly

by programming MISCOUT register. Writing this register with bit 3 as ‘0’, the system
video clock will be programmed to a new value. If bit 3 is set, the write into MISCOUT
does not affect video clock setting.

rev. 1.03 08.03.00



160

8.5 VGA Interrupt Generation

VGA generates vertical retrace interrupts, if System Control Register bit 12 is set. The
vertical retrace interrupt must be cleared using VGA register CRTC11. See Table 8.5
below.

ref reg Explanation

VGA IRQ ena (bit:12) | if thishit is set then the vga unit generated interrupt is
routed to the pci bus. An interrupt which isinitiated by the
vga block must be reset using by the vga unit video_irq
(bit:11)

Video IRQ (bit:11) if thisbit is set to one the circuit will generate an interrupt
request when the
video_y valuereachesthe video y ref value

video y ref (bits:10-0)

Table 8.5 System Control Register 49, r ef _r eg.

8.6 VGA Registers
8.6.1 General Registers

|M]SCOUT - Miscellaneous Output Register offset 005Ch / 0052h IStandard VGA
Access Read Address 3CCh

Write Address 3C2h

Index -

Access Type R/W
Format 7 6 5 4 3 2 1 0

[ vsp | HSP | PS | R | C | EVDM| P/OB |
Fields Field Bits Description

VSP 7 Vertical Sync Polarity

HSP 6 Horizontal Sync Polarity

PS 5 Page Select

R 4 Reserved

C 3:2 ClockSelect

EVDM 1 Enable VGA Display Memory

PI/OB 0 Port I/O Base

Register overall description:

Thisregistersis an important control register, which controls sync polarities, 1/0
addressing, pixel clock settings and memory access. Write to this register programs the
Video Refresh clock, if the bit 3 of the value written is zero.

rev. 1.03 08.03.00



161

Field description:

Vertical Sync Polarity
If set to zero (0), the vertical syncisasigna going fromlow to high (0- > 1).
If set to one (1), the vertical syncisasignal going from highto low (1 - > 0).

Horizontal Sync Polarity
If set to zero (0), the horizontal sync isasignal going from low to high (0 - > 1).
If set to one (1), the horizontal sync isasigna going from highto low (1 - > 0).

For some VGA monitors following table indicates the vertical resolution used with
corresponding Horizontal and Vertical sync values:

VSYNC Polarity HSYNC Polarity Vertical Size
0o(+) 0o(+) Reserved
0o(+) 1(-) 400
1(-) 0o(+) 350
1(-) 1(-) 480
Page Select

If display memory configuration isin so called in odd/even mode, internally only odd or

even memory addresses are used. The selection between odd and even memory addresses

is done according to the value of Page Select bit.

If Page Select bit is set to ‘1", only even memory locations are accessed in odd/even
modes.

If Page Select is set to ‘0, only odd memory locations are accessed in odd/even modes.

See also GFX5[4] for setting VGA to odd/even modes and GFX6[1] for switching into
chain odd/even modes.

Clock Select
This field selects the pixel clock. Internally selected pixel clock frequencies are:

MISCOUT|3] MISCOUT|2] Frequency
0 0 25 MHz
0 1 28 MHz
1 0 External
1 1 External

Writing to this field reprograms video clock to a certain frequency. User must take care of
setting to other pixel clock values than 25 or 28 MHz through modifying the system video
clock, from which the video clock frequency is actually derived. Writing value 2 or 3 to
this bit-field meansgxternal clock frequency and does not change the video clock

frequency.

Enable VGA Display Memory
This bit enables or disables enables VGA memory accesses from the host. This bit must
be set to ‘1, to obtain access to the VGA memory.

rev. 1.03

08.03.00



162

Port I/0 Base

If set to zero, VGA emulates Monochrome 1/0O Addresses. If monochrome 1/0O addresses
are used, the color 1/0 ports are not decoded and vice versa. The port mappingsin either

mode are:
Field: 0
INPUTS1 3BA 3DA
FEATCTRL 3BA 3DA
CRTCINDEX | 3B4 3D4
CRTCDATA 3B5 3D5
FEATCTRL - Feature Controller |offset 005Ah /006Ah |Standard VGA
Access Read Address 3CAh
Write Address 3DAh (color), 3BAh (mono)
Index -
Access Type R/W
Format 7 6 4 3 2 1 0
| R | Vss | R
Fields Field Bits Description
R 74 Reserved
Vss 3 Vertical sync select
R 2:0 Reserved

Register overall description:
Thisregister contains vertical sync control bit. The write port address of the register is
determined by MISCOUTI(].

Field description:

Vertical sync select

If set to zero (0), normal vertical sync is generated. If set to one (1), vertical syncis
logical OR of the vertical sync and the vertical display enable. Vertical display enableis

controlled by CRTC12, CRTCO7[1], CRTCO7[6] and CRTC40[7]

rev. 1.03

08.03.00




163

INPUTSO - Input Status 0 offset 52h /- Standard VGA |
Access Read Address 3C2h
Write Address -
Index -
Access Type R
Format 7 6 5 4 3 2 1 0
| VRi | FSs1 | Fso | ss | R
Fields Field Bits Description
VRI 7 Vertical Retrace Interrupt
Fs1 6 Feature Status 1
FSO 5 Feature Status 0
SS 4 Switch Sense
R 3:0 Reserved

Register overall description:

If vertical interrupts are enabled, the status of the interrupt line can be read through this
register. Software can use Switch Sense bit to determine the type of the connected
monitor. This register is aso used when writing to Attribute registers: dummy reading
from thisregister resets ATTRIDX to point to index.

Field description:

Vertical Retrace Interrupt

Reports the status of vertical interrupt. If vertical interrupt has been generated, it must be
cleared by the interrupt handler using register CRTC11.

1= Vertical interrupt is pending

0 = Interrupt line clear

Feature Status 1
Hardwired to zero (0).

Feature Status 0
Hardwired to zero (0).

Switch Sense

Reports the status of the switch sense inside the DAC. Thisfield can be used to determine
the monitor type. Typically, software uses Switch Sense to determine whether
monochrome or color monitor is connected. Thisis done by driving a high intensity color
values through the DAC. If red, green or blue wire to the monitor is not connected, the
current will go so high that the switch sense will be enabled. Since the output is
implemented as inverted, the actual Switch Sense value goes low.

rev. 1.03

08.03.00



164

|INPUTSl - Input Status 1 Ioffset 006Ah / - IStandard VGA
Access Read Address 3DAh (color), 3BAh (mono)

Write Address -

Index -

Access Type R
Format 7 6 5 4 3 2 1 0

| R | D | VR | LPsw | LPSt | DEN
Fields Field Bits Description

R 7:6 Reserved

D 5:4 Diagnostic

VR 3 Vertical Retrace

LPSw 2 Light Pen Switch

LPSt 1 Light Pen Strobe

DEN 0 Display Enable Not

Register overall description:
This register contains debugging lines for color palette registers, vertical retrace and

display enable bits. Vertical Retrace and Display Enable Not are used by software to
synchronize to the screen refresh.

Field description:

Diagnostic

Diagnostic field indicates the value of two of the eight address lines to color palette. The
address lines which are read are be selected by ATTR12[4-5] according to the following

table:
ATTRI12]5] ATTRI12[4] INPUTSI1]5] INPUTS1][4]
0 0 line2 line0
0 1 line5 line4
1 0 line3 linel
1 1 line7 line6

Vertical Retrace

1 = vertical retraceis occurring
0 = vertical retrace is not occurring

Light Pen Switch
Hardwired to one (1).

Light Pen Strobe
Hardwired to zero (0).

Display Enable Not
0 =videoisin display mode
1 = either blank or border is active

rev. 1.03

08.03.00



165

8.6.2 Sequencer Registers

|SEQINDEX - Sequencer Index Register offset 0054h Standard VGA
Access Read Address 3C4h
Write Address 3C4h
Index -
Access Type R/W
Format 7 6 5 4 3 2 1 0
| I
Fields Field Bits Description
I 7:0 Index

Register overall description:
Thisregister specifiesindex of the sequencer register to be accessed with the next 1/0

read or write operation to port 3C5h.

|SEQO - Sequencer Reset offset 0055h Standard VGA
Access Read Address 3C5h

Write Address 3C5h

Index 0

Access Type R/W
Format 7 6 5 4 3 2 1 0

| R | SR | AR
Fields Field Bits Description

R 72 Reserved

SR 1 Syncronous Reset

AR 0 Asyncronous Reset

Register overall description:
Sequencer reset register. This register isimplemented for compatibility only, and does not
affect the functionality of VGA Core.

Field description:

Synchronous Reset
0 Hold sequencer in reset state
1 Release reset

Asynchronous Reset
0 Hold sequencer in reset state
1 Release reset

rev. 1.03 08.03.00



166

[SEQ1 - Clocking Mode offset 0055h |Standard VGA
Access Read Address 3C5h

Write Address 3C5h

Index 1h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| R | sOo | sbk | DC | sbT | B |89DC|
Fields Field Bits Description

R 7:6 Reserved

SO 5 Screen Off

SbF 4 Shift by Four

DC 3 Dot Clock

SbT 2 Shift by Two

B 1 Bandwidth

8/9 DC 0 8/9 Dot Clocks

Register overall description:

Clocking mode register defines some important characteristics of the refresh. One can turn
screen off to achieve greater memory bandwidth to frame buffer from the host side. Shift
by four is used to divide serializer load frequency by four. Dot Clock is used to divide the
pixel clock by two for displaying low resolution modes. Shift by Two is used to divide the
serializer load frequency by two. 8 or 9 pixel wide characters can be selected using this
register in alphanumeric modes.

Field description:

Screen Off
The screen off prevents the display refresh logic from accessing the frame buffer. This
results in greater bandwidth to the memory from the host side, and can be used during

high speed memory transfer.

0 Screen on

1 Screen off

Shift by Four

0 Load serializers at every character cycle

1 Load serializers at every fourth character cycle
Dot Clock

If this bit is set to ‘1", dot clock is divided by two, and two consequent pixels are output
with same color. It is used to create low resolution modes, for example 320 pixels per
scanline. If set to zero, dot clock is not affected.

rev. 1.03 08.03.00



167

Shift by Two
0 Load serializers at every character cycle
1 Load serializers at every second character cycle, if Shift by Four is not used.

Bandwidth
Writing to this bit has no effect. It's purpose is to force the memory bandwidth between
host and refresh interfaces.

8/9 Dot Clocks
1 character width is 8 pixels.
0 character width is 9 pixels.

9 pixel characters can be used only in alphanumeric modes. Selection between graphics
and alphanumeric modes is done by ATTR10[0].

|SEQ2 - Plane Mask offset 0055h IStandard VGA
Access Read Address 3C5h
Write Address 3C5h
Index 2h
Access Type RW
Format 7 6 5 4 3 2 1 0
| R | PM
Fields Field Bits Description
R 7:4 Reserved
PM 3:0 Plane Mask

Register overall description:
The register selects the planes which can be accessed by the standard VGA host write
operations.

Field description:

Plane Mask

If bit corresponding to plane number is ‘1’, the plane can be accessed by host write
operations. Correspondingly, bit ‘0’, corresponding to plane number, means that the

plane can’t be accessed by host write operations. Bit zero stands for plane ‘0’ and bit three
stands for plane ‘3. Plane mask is not used in linear write mode.

rev. 1.03 08.03.00



168

|SEQ3 - Character Map Select offset 0055h IStandard VGA
Access Read Address 3C5h

Write Address 3C5h

Index 3h

Access Type R/W
Format 7 6 4 3 2 1 0

| R | sAH | saB | SA | SB
Fields Field Bits Description

R 7:6 Reserved

SAH 5 SAH

SAB 4 SAB

SA 3:2 SA

SB 1:0 SB

Register overall description:
Thisregister selects the character maps used. Character map A is used if the character

attribute bit 3 is ‘0’. Character map B is used if bit 3 is ‘1’. Normally, the two character
maps are the same (and the register is programmed to zero). Position of the character map
is calculated by the following formulas:

Character map A start = SA16384 + SAHx 8192
Character map B start = SB16384 + SBHx 8192

Character map is resided in the memory plane 3, and each character consists of 32
consequent bytes. Thus, a single 256 character map requires 8192 bytes of memory.

|SEQ4 - Memory Mode Ioffset 0055h IStandard VGA |
Access Read Address 3C5h

Write Address 3C5h

Index 4

Access Type R/W
Format 7 6 4 3 2 1 0

| R | CF | OE | EMP | GAm
Fields Field Bits Description

R 74 Reserved

CF 3 Chain Four

OE 2 Odd/Even

EMP 1 Extended Memory Present

GAm 0 Graphics/ Alphanumerics mode

rev. 1.03

08.03.00



169

Register overall description:

Memory Mode register controls host side odd/even mode behavior and has memory size
flag indicating the size of the video memory. Chain Four is used to enable special host
mode, where four display planes are chained together.

Field description:

Chain Four

If this bit is set to ‘1’ address to VGA memory is formed in a special way. Two low order
bits of address are ignored and will select the display plane where the data is written or
read. Two most significant bits of the address will become two least significant bits. For
example, if the memory write is to address 8007h, then the data is written to plane 3 of
memory address 8005h. This corresponds the double word addressing mode in VGA
refresh, enabled by CRTC14[6].Data is written only if corresponding bit in map mask
(SEQ?2) is enabled. This setting takes priority over chain odd/even in GFX6[1] and
odd/even in GFX5[4].

0 Normal operation
1 Chain Four mode
Odd/Even

This bit selects between odd/even and normal addressing modes. The value of GFX5[4]
should always be set to complement of this bit.

0 Odd/even enabled

1 Odd/even disabled

Extended Memory Present

0 Extended memory not present, memory size 64Kb

1 Extended memory present, memory size > 64Kb
rev. 1.03 08.03.00



170

8.6.3 CRTC Registers

| CRTCINDEX - CRTC Register Index [offset 0064h |Standard VGA
Access Read Address 3D4h (color), 3B4h (mono)
Write Address 3D4h (color), 3B4h (mono)
Index -
Access Type RW
Format 7 6 5 4 3 2 1 0
| I
Fields Field Bits Description
I 7.0 Index

Register overall description:

Thisregister specifies the CRTC register which is accessed through port 3B5h/3D5. The
mapping of CRTCINDEX and other CRTC registersis determined by MISCOUTI[O].
Writes to CRTC registers 0-7 can be disabled by setting CRTC11[7] to ‘1’.

CRTCO00 - Horizontal Total Ioffset 0065h IStandard VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 0
Access Type R/W
Format 7 6 5 4 3 2 1 0
| HT
Fields Field Bits Description
HT 7:0 Horizontal Total

Register overall description:
This register together with CRTC40[2] determines the screen width - 5 in characters
including borders and blanking. This register can be written only if CRTC11[7] is zero.

Field descriptions:

Horizontal Total

These bits together with CRTC40[2] determine the total width of display area - 5. This
includes borders and blanking. The actual resolution depends on character width, which
may be 8 or 9 pixels.

rev. 1.03 08.03.00



171

CRTCO01 - Horizontal Display End Ioffset 0065h IStandard VGA |
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 1h

Access Type RW
Format 7 6 5 4 3 2 1 0

| HDE
Fields Field Bits Description

HDE 7:0 Horizontal Display End

Register overall description:
This register together with CRTC40[ 3] determine the total width -1 of display areain

characters.
Thisregister can be written only if CRTC11[7] is zero.

Field descriptions:

Horizontal Display End
These hits together with CRTC40[ 3] determine the visible display area - 1 in characters.
The actual resolution depends on character width, which may be 8 or 9 pixels.

CRTQ02 - Horizontal Blanking Start [offset 0065h [Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 2h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| HBS
Fields Field Bits Description

HBS 7:0 Horizontal Blanking Start

Register overall description:
This register together with CRTC40[0] determines the start of horizontal blanking period.

Thisregister can be written only if CRTC11[7] is zero

Field descriptions:

Horizontal Blanking Start
These bits together with CRTC40[0] determine the start of the horizontal blanking period
in characters.

rev. 1.03

08.03.00



172

| CRTC03 - Horizontal Blanking End [offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 3h
Access Type R/W
Format 7 6 5 4 3 2 1 0
[ R | DES | HBE
Fields Field Bits Description
R 7 Reserved
DES 6:5 Display Enable Skew
HBE 4:0 Horizontal Blanking End

Register overall description:

This register together with CRTCO05[7], CRTC41[1-2], CRTCA41[ 7] determine the end of
horizontal blanking period in characters. This register can be written only if CRTC11[7] is
zero.

Field descriptions:

Display Enable Skew
Defines the number of characters by which horizontal display enable is delayed.

Horizontal Blanking End
These bits together with CRTCO05[7], CRTC41[1-2] and CRTC41[7] determine the end of
horizontal blanking period.

If CRTC41[7] is ‘0, the horizontal blanking period ends, when the character counter’s 6
lowest bits do equal the 6 low-order bits of horizontal blanking end value. With this
setting bits form CRTC41[1-2] are not included into horizontal blanking end value. This
is the standard VGA operation.

If CRTC41[7] is ‘1’ horizontal blanking ends, when 8 low-order bits correspond the
Horizontal Blanking End value. With this setting bits CRTC41[1-2] are included in
Horizontal Blanking End value.

rev. 1.03

08.03.00



173

CRTC04 - Horizontal Sync Start Ioffset 0065h IStandard VGA |
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 4h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| HSS
Fields Field Bits Description

HSS 7:0 Horizontal Sync Start

Register overall description:
This register together with CRTC40[1] determines the start of horizontal retrace period in
character clocks. Thisregister can be written only if CRTC11[7] is zero.

Field descriptions:

Horizontal Sync Start
These bits together with CRTC40[1] determine the start of the horizontal retrace period in

characters.

CRTC05 - Horizontal Sync End | offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 5h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| HBE5 | HRD | HRE
Fields Field Bits Description
HBE5 7 Horizontal Blanking End[5]
HRD 6:5 Horizontal Retrace Delay
HRE 4:0 Horizontal Retrace End

Register overall description:
This register determines the end of horizontal retrace period, horizontal retrace delay and

the sixth bit of end horizontal blanking value. This register can be written only if
CRTC11[7] is zero.

rev. 1.03

08.03.00



174

Field descriptions:

Horizontal Blanking End|5]
Thisisthe sixth bit of horizontal blanking end value. See CRTCO3 for details.

Horizontal Retrace Delay
Thisisthe number of charactersto delay the horizontal retrace. These bits are added to the
horizontal retrace start value.

Horizontal Retrace End

ThisisaMOD 32 value determining end of the horizontal retrace period. When 5 low-
order bits of the character counter equal Horizontal Retrace End value, the horizontal
retrace period ends.

CRTCO6 - Vertical Total [offset 0065h [Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 6h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| VT
Fields Field Bits Description
VT 7:0 Vertical Total

Register overall description:

This register together with CRTCO7[0], CRTCO7[5] and CRTC40[6] determine the total
height of display -2 including borders and blanking. This register can be written only if
CRTC11[7] iszero

Field descriptions:

Vertical Total
These bits together with CRTCO07[0], CRTCO7[5] and CRTC40[6] determine the total
height of display -2 including borders and blanking.

rev. 1.03

08.03.00



175

CRTC07 - CRTC Overflow Register

[offset 0065h

[Standard VGA

Access

Format

Fields

Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 7h
Access Type R/W
7 6 5 4 3 2 1 0

| vssB9 | VDEB9| VvTB9 | LCB8 | VBSB8 | VSSB8 | VDEBS| VTBS |

Field Bits Description

VSSB9 7 Vertical Sync Start Bit 9
VDEB9 6 Vertical Display End Bit 9
VTIB9 5 Vertical Total Bit 9

LCB8 4 Line Compare Bit 8

VBSB8 3 Vertical Blanking Start Bit 8
VSSB8 2 Vertical Sync Start Bit 8
VDEBS 1 Vertical Display End Bit 8
VIB8 0 Vertical Total Bit 8

Register overall description:

This register includes bits which extend vertical counters. This register can be written
only if CRTC11[7] is zero, with the exception of bit 4 which can be written normally
regardless of CRTC11[7] setting.

Field descriptions:

Vertical Sync Start Bit 9

The ninth bit of vertical sync start (CRTC10). Other extension bits are CRTCO07[2] and

CRTCA40[5].

Vertical Display End Bit 9

The ninth bit of vertical display end (CRTC12). Other extension bits are CRTCO07[1] and

CRTC40[7].

Vertical Total Bit 9

The ninth bit of vertical total (CRTCO06). Other extension bits are CRTC07[0] and

CRTCA40[6].

Line Compare Bit 8

The ninth bit of line compare (CRTC18). Other extension bits are CRTC09[6] and
CRTCA41][0]. This bit can be written even if CRTC11[7]is ‘1.

rev. 1.03

08.03.00



176

Vertical Blanking Start Bit 8
The eighth bit of vertical blanking start (CRTC15). Other extension bits are CRTC09[5]
and CRTC40[4].

Vertical Sync Start Bit 8
The eighth bit of vertical sync start (CRTC10). Other extension bits are CRTCO7[7] and
CRTCA4Q[5].

Vertical Display End Bit 8
The eight bit of vertical total (CRTCO06). Other extension bits are CRTCO07[5] and
CRTCA40[6].

Vertical Total Bit 8
The eighth bit of vertical display end. Other extension bits are CRTCO7[5 and
CRTCA40[6].

CRTCO08 - Preset Row Scan | offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 8h
Access Type R/W
Format 7 6 5 4 3 2 1 0
[ R | BP | PRS
Fields Field Bits Description
R 7 Reserved
BP 6:5 Byte Panning
PRS 4:0 Preset Row Scan

Register overall description:

This register controls character horizontal byte panning by adding 0-3 to the address of
the first character on the screen. Smooth vertical scrolling can be done using Preset Row
Scan, which determines the first displayed scanline of the first character row.

Field descriptions:

Byte Panning

Thisfield defines how many characters are panned from the left edge of the screen. If the
value of this field is ‘0", screen is displayed normally. If the value is ‘3’, then first three
characters are skipped. The result is screen being scrolled left 3 characters.

Preset Row Scan
This field determines the first displayed scanline on the first character row. Using this
register, it is possible to make smooth vertical scrolling across a character.

rev. 1.03

08.03.00



177

CRTC09 - Character Cell Height [offset 0065h [Standard VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index %h
Access Type RW
Format 7 6 5 4 3 2 1 0
| ¢csD | LCBY | VBSBY | CH
Fields Field Bits Description
CSD 7 CRTC Scan Double
LCB9 6 Line Compare Bit 9
VBSB9 5 Vertical Blanking Start Bit 9
CH 4:0 Character Height

Register overall description:

CRTC Scan Double alows doubling of the scanlines, dividing the vertical resolution by 2.
Two extension bits, for Line Compare and Vertical Blanking, arein bits5 and 6.
Character height is determined by bits 0 to 4.

Field descriptions:

CRTC Scan Double
If this bit is ‘1’, every scanline is displayed twice, dividing the vertical resolution by 2.

Line Compare Bit 9
The tenth bit of line compare field. See CRTC18 for details.

Vertical Blanking Start Bit 9
The tenth bit of vertical blank start. See CRTC15 for details.

Character Height
This field determines the height of the character. Character height is between 1-32 pixels.
The value in this field is Character Height - 1.

rev. 1.03

08.03.00



178

| CRTCOA - Cursor Start [offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index Ah
Access Type RW
Format 7 6 5 4 3 2 1 0
| R | cH | CS
Fields Field Bits Description
R 7:6 Reserved
CH 5 Cursor Hide
G 4:0 Cursor Start

Register overall description:
Thisregister disables/enables the cursor and defines the first scanline of the cursor.

Field descriptions:

Cursor Hide
0 Cursor on
1 cursor off.

Cursor Start

Thisfield determines the starting scanline of the cursor inside character box. if cursor start

is greater than cursor end (CRTCOB), cursor is not displayed.

CRTCOB - Cursor End

Ioffset 0065h

IStandard VGA

Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index Bh
Access Type RW
Format 7 6 4 3 2 1 0
[ R | CS | CE
Fields Field Bits Description
R 7 Reserved
CS 6:5 Cursor Skew
CE 4:0 Cursor End
rev. 1.03 08.03.00



179

Register overall description:
Defines the scanline where cursor ends. Cursor Skew field specifies how many characters
cursor is skewed to right.

Field descriptions:

Cursor Skew
The number of characters the cursor is delayed from the cursor start address (CRTCOE
and CRTCOF).

Cursor End
Thisfield determines the ending scanline of the cursor inside character box. if cursor end
is smaller than cursor start (CRTCOA), cursor is not displayed.

CRTCOC - Start Address High [offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index Ch

Access Type R/W
Format 7 6 5 4 3 2 1 0

| SSAH
Fields Field Bits Description

SSAH 7:0 Screen Start Address High

Register overall description:
Thisregister together with CRTCOD and CRTC43[0-4] define display start address.
Field descriptions:

Screen Start Address High
Bits 8 to 15 of the display start address

rev. 1.03

08.03.00



180

| CRTCOD - Start Address Low [offset 0065h [Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index Dh
Access Type R/W
Format 7 6 5 4 3 2 1 0
| SSAL
Fields Field Bits Description
SSAL 7.0 Screen Start Address Low

Register overall description:
This register together with CRTCOC and CRTC43[0-4] define
the location in display memory where the screen refresh starts.

Field descriptions:

Screen Start Address Low
Bits 0 to 7 of the display start address

CRTCOE - Cursor Location High Ioffset 0065h IStandard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index Eh
Access Type R/W
Format 7 6 5 4 3 2 1 0
| CLH
Fields Field Bits Description
CLH 7:0 Cursor Location High

Register overall description:
This register together with CRTCOF determines the cursor’s location in the display
memory.

Field descriptions:

Cursor Location High
Bits 8 to 15 of the cursor location.

rev. 1.03

08.03.00



181

CRTCOF - Cursor Location Low | offset 0065h [Standard VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index Fh
Access Type R/W
Format 7 6 5 4 3 2 1 0
| CLL
Fields Field Bits Description
CLL 7:0 Cursor Location Low

Register overall description:
This register together with CRTCOE determines the cursor’s location in the display
memory.

Field descriptions:

Cursor Location Low
Bits O to 7 of the cursor location.

CRTCI0 - Vertical Sync Start |offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 10h
Access Type RW
Format 7 6 5 4 3 2 1 0
| VSS
Fields Field Bits Description
VSS 7:0 Vertical Sync Start

Register overall description:
This register determines the eight least-significant bits of the vertical sync start value. The
other bits can be found from CRTCO07[2], CRTCO07[7] and CRTC40[5].

Field descriptions:

Vertical Sync Start
Bits O to 7 of the vertical sync start. The other bits can be found from CRTCO07[2],
CRTCO07[7] and CRTC40[5].

rev. 1.03 08.03.00



182

|CRTC11 - Vertical Sync End [offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 11h
Access Type RW
Format 7 6 5 4 3 2 1 0
[ PRO-Z| B | DvI | CvI | VSE
Fields Field Bits Description
PRO-7 7 Protect Registers 0-7
B 6 Bandwidth
DVI 5 Disable Vertical Interrupt
CVI 4 Clear Vertical Interrupt
VSE 3:0 Vertical Sync End

Register overall description:

Thisregister determines the end of the vertical retrace period. Registers CRTCO0-
CRTCOQ7 can be protected from writing by bit 7. Vertical interrupt disable and clear flags
arein bits4 and 5.

Field descriptions:

Protect Registers 0-7
If set to ‘1", the registers from CRTCO00 to CRTCO7 are protected from writing, with
the exception of CRTCO7[4]. if set to ‘0’ registers can be written normally

Disable Vertical Interrupt

If set to ‘1’ the vertical interrupt is disabled, and INPUTSO[7] never creates vertical
interrupt flag..

If set to ‘0, interrupt is generated normally.

Clear Vertical Interrupt
When set to ‘0’ the vertical interrupt flag INPUTSO [7] is cleared, and interrupt can not
occur. When set to ‘1’ interrupt can occur again.

Vertical Sync End
This register determines the end of vertical retrace period. When bits 0-3 of row scan
counter equal these bits the vertical retrace period ends.

rev. 1.03

08.03.00



183

CRTCI2 - Vertical Display End |offset 0065h [Standard VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 12h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| VDE
Fields Field Bits Description
VDE 7:0 Vertical Display End

Register overall description:

This register defines eight least-significant bits of display vertical resolution. Other bits
can be

found from CRTCO07[1], CRTCO7[6] and CRTC40[7].

Field descriptions:

Vertical Display End
Bits 0 to 7 vertical display end value.

CRTC13 - Offset Register |offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 13h
Access Type RW
Format 7 6 5 4 3 2 1 0
| O
Fields Field Bits Description
@) 7:0 Offset

Register overall description:

Thisregister defines least-significant bits of display memory offset value. Thisisthe
difference between successive scanlinesin display memory. Extended bits of the offset
value are CRTC43[5-7].

Field descriptions:

Offset
These bits define how many bytes difference exists between successive scanlines. The
actual value is multiplied by two, four or eight, depending on the addressing mode.

rev. 1.03

08.03.00



184

|CRTC14 - Underline Register Ioffset 0065h IStandard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 14h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| R | DWM| CbF | UL
Fields Field Bits Description
R 7 Reserved
DWM 6 Double Word Mode
CbF 5 Count by Four
UL 4:0 Underline Location

Register overall description:
This register defines the position of the underline in character. The Count by Four and

double word addressing modes are controlled by thisregister.

Field descriptions:

Double Word Mode

If this bit is set to ‘1", double word addressing is used. In double word addressing, address
to frame buffer increments in 4 byte steps. This is achieved by rotating the address to the
frame buffer left by 2. By using this approach, two most significant bytes will become two
least significant bytes. If double word addressing is not enabled CRTC17[6] controls
whether byte or word addressing is used.

Count by Four

If this bit is set to ‘1’, address to the frame buffer is incremented on every fourth character
clock. This is normally used together with CRTC14[6] in 256-color modes to allow the
sequencer to process all the four pixels loaded from a single double word aligned address.
If this bit is set to ‘0’, character counter is incremented normally.

Underline Location
This field specifies the scanline inside the character box, where the underlining occurs.

rev. 1.03

08.03.00



185

CRTC15 - Vertical Blank Start Ioffset 0065h IStandard VGA |
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 15h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| VBS
Fields Field Bits Description

VBS 7:0 Vertical Blank Start

Register overall description:
The register defines start of the vertical blanking period.

Field descriptions:

Vertical Blank Start
This register defines bits O to 7 of the vertical blanking start value. Other bits can be found

from CRTCO7[3], CRTCO09[5] and CRTC40[4].

CRTC16 - Vertical Blank End |offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 16h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| VBE
Fields Field Bits Description

VBE 7:0 Vertical Blank End

Register overall description:
The register defines end of the vertical blanking period.

Field descriptions:

Vertical Blank End
When vertical counters 8 least-significant bits correspond Vertical Blank End value, the

vertical blanking period ends.

rev. 1.03

08.03.00



186

|CRTC17 - Mode Control Register Ioffset 0065h IStandard VGA
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 17h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| WWAR | WBM| aw | R | CT | DVC | SRSC | CMs |
Fields Field Bits Description

HWR 7 Hardware reset

WBM 6 Word/Byte Mode

AW 5 Address Wrap

R 4 Reserved

CT 3 Count by two

DVC 2 Double Vertical Counters

SRSC 1 Select Row Scan Counter

CMS 0 Compatibility Mode Support

Register overall description:
The register defines end of the vertical blanking period.

Field descriptions:

Hardware Reset

0 refresh logic is deactivated.
1 refresh is activated.
Word/Byte Mode

If this bit is ‘0’ frame buffer addresses are rotated left by one and the frame buffer is
accessed in two byte (word) steps. This setting takes priority over double word addressing
(CRTC14[6]). When the address is rotated most significant byte gets to the least
significant byte

If the bit is ‘1’, frame buffer address is not multiplied by two and frame buffer is accessed
in byte steps. However, if CRTC14[6] is enabled, then double word addressing is used.

Address Wrap

If Word addressing (CRTC17[6]) is used, this field determines whether address is rotated
or simply shifted. If set to ‘1’ rotation is done to 16-least significant bits of the address.
This means, that the bit 15 is rotated to bit 0. If set to ‘0’ rotation is done to 14-least
significant bits of the address. This means, that the bit 13 is rotated to bit O.

rev. 1.03

08.03.00



187

Count by Two
If set to ‘1’, counter to frame buffer is incremented on every other character clock. This is
for refresh cycles only. This setting takes priority over Count by Four in CRTC14[5].

Double Vertical Counters

1 vertical counter values are doubled by incrementing vertical scanline counters at
every other horizontal retrace.
0 vertical counters are clocked normally.

Select Row Scan Counter

This bit is provided for hercules compatibility.

0 scanline counter bit 1 is substituted for frame buffer address bit 14.
1 no substitution is performed.

Compatibility Mode Support

If set to ‘0", frame buffer address bit 13 is substituted for scanline counter bit 0. This
provides for CGA compatibility.

If set to ‘1’, no substitution is performed.

CRTC18 - CRTC Line Compare |offset 0065h |Standard VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 18h
Access Type RW
Format 7 6 5 4 3 2 1 0
| LC
Fields Field Bits Description
LC 7:0 Line Compare

Register overall description:
This register sets the scanline from where the screen refreshing gets back to display
memory location 0.

Field descriptions:

Line Compare

This field defines 8 least-significant bits of the line compare value. Other bits can be
found from CRTCO07[4] and CRTC09[6] andCRTC41[0]. When scanline counter equals
line compare the refresh starts from memory location 0. The ATTR10[5] selects whether
pixel panning is reset to zero or not during when line compare match occurs.

rev. 1.03

08.03.00



188

|CRTC40 - CRTC Extension Register 1 Ioffset 0065h IExtended VGA
Access Read Address 3D5h (color), 3B5h (mono)

Write Address 3D5h (color), 3B5h (mono)

Index 40h

Access Type R/W
Format 7 6 5 4 3 2 1 0

| VDEb1| VTb1 | VSSb1 | VBSb1 | HDEb8 | HTb8 | HSSb8 | HBSDS |

Fields Field Bits Description
VDEDb1 7 Vertical Display End bit 10
VIbl 6 Vertical Total bit 10
VSSbl 5 Vertical Sync Start bit 10
VBSb1 4 Vertical Blank Start bit 10
HDEDbS 3 Horizontal Display End bit 8
HTb8 2 Horizontal Total bit 8
HSSb8 1 Horizontal Sync Start bit 8
HBSb8 0 Horizontal Blanking Start bit 8

Register overall description:
Thisregister extends VGA horizontal and vertical refresh counters.

rev. 1.03 08.03.00



189

CRTCH41 - CRTC Extension Register 2 Ioffset 0065h IExtended VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 41h
Access Type RW
Format 7 6 5 4 3 2 1 0
| HBE ] AA | R | saM | 1A | HBE | LCB1
Fields Field Bits Description
HBE 7 Horizontal Blanking Extension
AA 6 Address Aliasing
R 5 Reserved
SAM 4 Sequencer Addressing Mode
LA 3 Linear Addressing
HBE 2:1 Horizontal Blanking Extension
LCB1 0 Line Compare Bit 10

Register overall description:
Thisregister extends some VGA refresh counters so that larger displays can be defined.

Field descriptions:

Horizontal Blanking Extension

If this bit is set to ‘0’, horizontal blank end acts as MOD 64

counter to horizontal character clock. In this mode, the horizontal
blanking period ends, when 6 low-order bits correspond the horizontal
blanking end 6 low-order bits from CRTC3[0-4] and CRTC5[7].

If set to ‘1", horizontal blank end acts as MOD 256 counter

to horizontal character clock. In this mode, the horizontal blanking
period ends, when 8 low-order bits correspond the horizontal
blanking end 6 low-order bits from CRTC3[0-4], CRTC5[7] and
CRTCA41]1-2].

See CRTCO3 for details.

Address Aliasing
0 frame buffer accesses are aliased to 256kb memory.
1 whole memory can be accessed through the VGA memory window using

banking registers.

Sequencer Addressing Mode

If this bit is set to ‘1’ the sequencer is extended to 64 bit to provide faster 8-bit linear
refresh. 8 or 9 8-bit pixels are loaded per sequencer fill cycle.

If this bit is set to ‘0’ the sequencer is in VGA mode.

rev. 1.03

08.03.00



190

Linear Addressing
1 frame buffer is accessed linearly.
0 frame buffer is accessed in VGA fashion.

Horizontal Blanking Extension
If horizontal blanking extension is used (CRTC41[7]), these hits are the bits 6-7 of the

Horizontal Blanking End value.

CRTC42 - CRTC Extension Register 3 Ioffset 0065h IExtended VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 42h
Access Type R
Format 7 6 5 4 3 2 1 0
| R [ VRE
Fields Field Bits Description
R 71 Reserved
VRE 0 VGA Refresh Enable

Register overall description:
Thisisread only register that indicates whether VGA refresh is enabled. If thisbit is zero,

true/high color refresh is active.

Field descriptions:

VGA Refresh Enable

1 VGA Refreshis enabled.
0 Refresh isin 16-hit or higher mode.
rev. 1.03 08.03.00



191

CRTC43 - CRTC Extension Register 4 Ioffset 0065h IExtended VGA |
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 43h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| ORB | DSA
Fields Field Bits Description
ORB 7:5 Offset Register Bits 8-10
DSA 4:0 Display Start Address bits 16-20

Register overall description:

Thisregister extends display start address and offset registers.
Field descriptions:

Offset Register, bits 8-10

Detailsin CRTC13.

Display Start Address bits 16-20
Detailsin CRTCOC and CRTCOD.

CRTC44 - Read Bank Start Address Ioffset 0065h IExtended VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 44h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| RBSA
Fields Field Bits Description
RBSA 7:0 Read Bank Start Address

Register overall description:
This register determines VGA memory read bank’s start address.

Field descriptions:

Read Bank Start Address
When VGA memory is read, the actual address is address + (Read Bank Start Address)
65536.

rev. 1.03

08.03.00



192

|CRTC45 - Write Bank Start Address Ioffset 0065h IExtended VGA
Access Read Address 3D5h (color), 3B5h (mono)
Write Address 3D5h (color), 3B5h (mono)
Index 45h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| WBSA
Fields Field Bits Description
WBSA 7:0 Write Bank Start Address

Register overall description:
This register determines VGA memory write bank’s start address.

Field descriptions:

Write Bank Start Address
When VGA memory is written, the actual address is address + (Write Bank Start Address)

x 65536.

rev. 1.03 08.03.00



8.6.4 Graphics Registers

193

|GFXINDEX - Graphics Register Index offset 005Eh Standard VGA
Access Read Address 3CEh
Write Address 3CEh
Index -
Access Type RW
Format 7 6 4 3 1 0
| I
Fields Field Bits Description
I 7:0 Index

Register overall description:

Thisregister specifies the register to be accessed by the next I/O read or write to address

3CFh.
GEFXO0 - Set / Reset Register offset 005Fh Standard VGA
Access Read Address 3CFh
Write Address 3CFh
Index Oh
Access Type R/W
Format 7 6 4 3 1 0
| R | SRP
Fields Field Bits Description
R 74 Reserved
SRP 3:0 Set/Reset Plane

Register overall description:

One of settings for write mode O or 3.

Field descriptions:

Set/Reset Plane

In write mode 0O, if enable set/reset (GFX1) is enabled for corresponding plane, then the
plane is written with the value of the bit assigned to the planein this field.

In write mode 3 each plane is written with the value of the bit assigned to the plane in this
field, before ALU operations, latch combination and plane masking are done.

rev. 1.03

08.03.00



194

|GFX1 - Enable Set / Reset Register offset 005Fh IStandard VGA
Access Read Address 3CFh
Write Address 3CFh
Index 1h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| R | ESR
Fields Field Bits Description
R 74 Reserved
ESR 3:0 Enable Set/Reset

Register overall description:
One of settings for write mode O.

Field descriptions:

Enable Set/Reset
In write mode O, if enable set/reset is enabled for corresponding plane, then the plane is
written with the value of the bit assigned to the plane in GFX0[0-3]

GFX2 - Color Compare offset 005Fh IStandard VGA
Access Read Address 3CFh
Write Address 3CFh
Index 2h
Access Type RW
Format 7 6 4 3 1 0
| | o
Fields Field Bits Description
74 Reserved
CcC 3:0 Color Compare

Register overall description:

One of settings for read mode 1.

rev. 1.03

08.03.00




195

Field descriptions:

Color Compare

Thisregister defines the color that is compared against latch bytesin read mode 1. If the
color matches, then corresponding bit is ‘0", otherwise, ‘1'. (this applies only for 8
pixels/byte modes). The color’s bit can be forced to match with GFX7[0-3], color don’t

care.
GFX3 - Data Rotate offset 005Fh Standard VGA |
Access Read Address 3CFh
Write Address 3CFh
Index 3h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| R | AFS | DR
Fields Field Bits Description
R 7:5 Reserved
AFS 4:3 ALU Function Select
DR 2:0 Data Rotate

Register overall description:
Selects ALU function for write modes 0,2 and 3 and data rotation
for write modes 0 and 3.

Field descriptions:

ALU Function Select
ALU functions are operational in write modes 0, 2 and 3.

0 = no operation

1 = AND written data with latches
2 = OR written data with latches
3 = XOR written data with latches

Data Rotate
Write mode 0 and 3 specific setting for rotating data before it's written. The data is rotated
right.

rev. 1.03 08.03.00



196

|GFX4 - Read Map offset 005Fh IStandard VGA
Access Read Address 3CFh

Write Address 3CFh

Index 4h

Access Type R/W
Format 7 6 5 4 3 1 0

| R | RM
Fields Field Bits Description

R 72 Reserved

RM 1:0 Read Map

Register overall description:
Selects read map in read mode 0.

Field descriptions:

Read Map

Thisfield specifies the map that is read from the address. Applies only for read mode O.

GFX5 - Mode Register offset 005Fh |Standard VGA
Access Read Address 3CFh
Write Address 3CFh
Index 5h
Access Type R/W
Format 7 6 5 4 3 1 0
| R | SM | OE | RM | | WM
Fields Field Bits Description
R 7 Reserved
SM 6:5 Sequencer Mode
OE 4 Odd/Even
RM 3 Read Mode
R 2 Reserved
WM 1:0 Write Mode
Register overall description:
Miscellaneous V GA host side functions are defined by this register.
rev. 1.03 08.03.00




197

Field descriptions:

Sequencer Mode
These hits define how the sequencer is loaded to for palette or color palette accesses

0 = standard VGA output format
1 = CGA output format

2 = MCGA output format
Odd/Even

If this bit is set to ‘1’, graphics controller is set to odd/even mode. This means that odd
memory accesses address odd memory planes, and even memory accessed address even
memory planes. This bit should be set to complement of SEQ4[2] to enable odd/even
addressing.

Read Mode

If set to ‘0’, read mode O is used. In read mode 0, single plane (determined by GFX4) is
read. If display is in chain four mode, odd-even or chain odd/even mode, then the plane
read is determined similarly to write.

If set to ‘1", read mode 1 is used. In read mode 1, color don’t care (GFX7) and color
compare (GFX2) are used to determine how data is read.

Write Mode
Defines which of the four write modes is used.

GFX6 - Miscellaneous Register offset 005Fh Standard VGA
Access Read Address 3CFh
Write Address 3CFh
Index 6h
Access Type RW
Format 7 6 4 3 2 1
| R | MM | COE | Gm
Fields Field Bits Description
R 74 Reserved
MM 3:2 Memory Map
COE 1 Chain Odd Even
GM 0 Graphics Mode

Register overall description:

Miscellaneous VGA host side functions are defined by this register.

rev. 1.03

08.03.00




198

Field descriptions:

Memory Map
Thisfield specifies the memory map of the VGA.

Memory Map Value Memory Start Memory End
0 A0000h BFFFFh
1 A0000h AFFFFh
2 B0O0OOh B7FFFh
3 B8000h BFFFFh

Chain Odd Even

If this bit is set to ‘1’, then even addresses access planes 0 and 2, and odd
addresses access planes 1 and 3.

If this bit is set to ‘0’, no chaining occurs.

Graphics Mode

0 alphanumeric mode of operation
1 graphical mode of operation
GEFX7 - Color Don't Care offset 005Fh IStandard VGA
Access Read Address 3CFh
Write Address 3CFh
Index 7h
Access Type RW
Format 7 6 5 4 3 2 1 0
| R [ CDt C
Fields Field Bits Description
R 74 Reserved
CDtC 3:0 Color Don't Care
Register overall description:
Read mode 1 specific register.
Field descriptions:
Color Don’t Care
This register is used in conjunction with GFX2, in read mode 1. Setting a bit to ‘1’ means
that corresponding plane is taken into comparison. Setting a bit to ‘0’ means that
corresponding plane is ignored, as if it had matched.
rev. 1.03 08.03.00



199

GFX8 - Write Mask offset 005Fh Standard VGA |
Access Read Address 3CFh
Write Address 3CFh
Index 8h
Access Type R/W
Format 7 6 4 3 2 1 0
| WM
Fields Field Bits Description
WM 7:0 Write Mask

Register overall description:
Bit mask for writing. Appliesto modes 0 and 2.

Field descriptions:

In write mode 0, these bits control whether corresponding bit is written to the frame buffer

Write Mask

or not.

1 write

0 do not write.

In write mode 2, these bits select which of the bits are written from the host data and
which are taken from the latches.

1 host data

0 latched data.

rev. 1.03

08.03.00



200

8.6.5 Attribute Controller Registers

ATTRIDX - Attributer Index offset 0051h / 0050h Standard VGA
Access Read Address 3Q0h
Write Address 3Q0h
Index -
Access Type RW
Format 7 6 5 4 3 1 0
R ERA
Fields Feld Bits Description
R 7:6 Reserved
ERA 5 Enable Refresh Access
I 4:0 Index

Register overall description:

Thisregister defines the index to the attributer registers. ATTRIDX hasinternal flip flop,

so that every write switches between attribute register index and attribute register data.
Thefilp flop is resetted to point to index by 1/0 read from INPUTSL1 register. If bit 5 of

this register is zero, attribute registers are locked from refresh logic. This means that every
time attribute register is accessed, the bit 5 must be set to ‘1’ enable screen refresh.

ATTRPAL - Palette Registers offset 0051h / 0050h IStandard VGA
Access Read Address 3C1h

Write Address 3COh

Index 0-fh

Access Type R/W
Format 7 6 5 4 3 1 0

| R CI
Fields Field Bits Description

R 7:6 Reserved

CI 5:0 Color Index

Register overall description:

Each of these registers define VGA palette color for a 16-color palette index, that is
indexes to 256-color palette registers.

rev. 1.03

08.03.00



201

Upper 2 hits of the color palette index are taken from ATTR14[2-3], and if ATTR10[7] is
‘1’, the bits 4-5 of the color palette index are taken from ATTR14[0-1]. The extension for
bits 4-5 do not apply for 256 or higher color modes.

ATTRI10 - Attribute Controller Mode offset 0051h / 0050h [Standard VGA |
Access Read Address 3C1h
Write Address 3C0h
Index 10h
Access Type RW
Format 7 6 5 4 3 2 1 0
| IPs | PDcs| PPC | R | BE | LGE | DT | GA
Fields Field Bits Description
IPS 7 Internal Palette Size
PDCS 6 Pixel Double Clock Select
PPC 5 Pixel Panning Compatibility
R 4 Reserved
BE 3 Blink Enable
LGE 2 Line Graphics Enable
DT 1 Display Type
GA 0 Graphics/ Alphanumeric

Register overall description:
This register determines various settings for refresh logic.
See ATTRIDX for information about writing to attribute registers.

Field descriptions:

Internal Palette Size
If this field is ‘1", the bits 4-5 of the palette register value are taken from ATTR14[0-1]. In
256 color modes this register is ignored.

Pixel Double Clock Select

If this field is selected, the attribute controller bypasses palette registers and pixels are
generated from 8-bit index formed by two consequent 4-bit values from the sequencer.
This means, that it requires two cycles to generate a single pixels from 4 bit wide
sequencer, and pixel of same color is displayed two times before the color can change.

Pixel Panning Compatibility

If set to ‘1’, line compare match will reset the pixel panning value to ‘0’. This makes
possible to scroll the upper partition of the screen independently.

If set to ‘0’, line compare does not affect the scrolling.

rev. 1.03

08.03.00



202

Blink Enable
1 character blinking is enabled.
0 character blinking is disabled.

Line Graphics Enable

Thisfield applies only for 9-bit wide charactersin alphanumeric modes.

If this bit is set to ‘1’, the ninth bit is copied from the eight bit for character codes in the
range COh-DFh.

If this bit is set to ‘0’, the ninth bit is set to same as the background color.

Display Type
If this bit is set to ‘1’, monochrome display attributes are
used. The attribute codes for the monochrome adapter are:

Attribute Code | Attribute
7h Normal
Fh Intense
1h Underline
9h Underline intense
70h Reverse
FOh Blinking to Reverse
Graphics/Alphanumeric
0 alphanumeric mode
1 graphics mode
ATTR11 - Overscan Color Register offset 0051h / 0050h IStandard VGA
Access Read Address 3C1h
Write Address 3C0h
Index 11h
Access Type R/W
Format 7 6 5 4 3 2 1 0
| oC
Fields Field Bits Description
oC 7:0 Overscan Color
Register overall description:
This register determines the border color, which is defined as color between display end
and blanking.
See ATTRIDX for information about writing to attribute registers.
Field descriptions:
Overscan Color
8 bit color palette index to overscan color.
rev. 1.03 08.03.00



203

ATTR12 - Color Plane Enable Register offset 0051h / 0050h Standard VGA |
Access Read Address 3C1h
Write Address 3COh
Index 12h
Access Type RW
Format 7 6 4 3 2 1 0
| R VSM | CPE
Fields Field Bits Description
R 7:6 Reserved
VSM 5:4 Video Status MUX
CPE 3:0 Color Plane Enable

Register overall description:

Register has mux for diagnostic field in INPUTS1 and mask for display planes.
See ATTRIDX for information about writing to attribute registers.

Field descriptions:

Video Status MUX

Selects the lines used for diagnostic field in INPUT S1[4-5].

Color Plane Enable

If corresponding plane is set to ‘1’, the plane is enabled for the refresh accesses.
If corresponding plane is set to ‘0’, the plane can't be accessed by the video refresh.

ATTR13 - Horizontal Pixel Panning offset 0051h / 0050h Standard VGA
Access Read Address 3C1h
Write Address 3C0h
Index 13h
Access Type RW
Format 7 6 4 3 2 1 0
| R | HPP
Fields Field Bits Description
R 7:4 Reserved
HPP 3:0 Horizontal Pixel Pan

Register overall description:

This register defines how many pixels characters are panned horizontally.
See ATTRIDX for information about writing to attribute registers.

rev. 1.03

08.03.00



204

Field descriptions:

Horizontal Pixel Pan
Thisfield defines how many pixels screenis scrolled to the left. In 9-dot wide
alphanumeric modes the screen is scrolled the field value - 1 pixels, and with value ‘0’

eight pixels.

ATTR14 - Color Select Register offset 0051h / 0050h Standard VGA
Access Read Address 3C0Oh
Write Address 3C1h
Index 14h
Access Type RW
Format 7 6 5 4 3 2 1 0
| R | CPA67 | CPA45
Fields Field Bits Description
R 7:4 Reserved
CPA67 3:2 Color Palette Address, Bits 6 and 7
CPA45 1:0 Color Palette Address, Bits 4 and 5

Register overall description:
The bits of this field extend the ATTRPAL register values to full 8-bit color palette index.

See ATTRIDX for information about writing to attribute registers.

Field descriptions:

Color Palette Address, Bits 6 and 7
These bits extend the palette index from ATTRPAL registers to full 8-bit palette index. In

256-color, or higher, modes this field is ignored.

Color Palette Address, Bits 4 and 5
If ATTR10[7] is ‘1’, this the palette register bits 4-5 are substituted for these bits.

rev. 1.03

08.03.00



8.6.6 Color Palette Registers

205

|CPWADDR - Color Palette Write Address offset 0058h Standard VGA
Access Read Address 3C8h
Write Address 3C8h
Index -
Access Type R/W
Format 7 6 5 4 3 2 1 0
| CPWA
Fields Field Bits Description
CPWA 7:0 Color Palette Write Address

Register overall description:

Write address to the color palette registers.

Field descriptions:

Color Palette Write Address
Selects one of the 256 color palette registers for writing. Writing is done through

CPDATA register. Write to this field resets the palette index to point to red color

component.

CPRADDR - Color Palette Read Address

Access

Format

Fields

|offset - /0057h Standard VGA

Read Address -
Write Address 3C7h
Index -
Access Type W

7 6 4 3 2 1 0
| CPRA
Field Bits Description
CPRA 7:0 Color Palette Read Address

Register overall description:

Read address to the color palette registers.

rev. 1.03

08.03.00



206

Field descriptions:

Color Palette Read Address

Selects one of the 256 color palette registers for reading. Reading is done through
CPDATA register. Writeto this field resets the palette index to point to red color

component.
CPDATA - Color Palette Data offset 0059h IStandard VGA
Access Read Address 3C9%h
Write Address 3C9%h
Index -
Access Type R/W
Format 7 6 5 4 3 2 1 0
| R CCV
Fields Field Bits Description
R 7:6 Reserved
ccv 5:0 Color Component Value

Register overall description:

The palette entries are read and written through this port.

Field descriptions:

Color Component Value
The color palette consists of 256 18-bit registers having intensities for red, green and blue.
Palette index points to one color component of aregister. When datais read or written the
index autoincrements
to point to next component. The first component is red, and the last is blue. When the blue
component has been read or written the index moves to the next 18-bit register, or if the

register index overflows, returnsto the register 0.

CPSTATE - Color Palette State offset 0057h / - IStandard VGA
Access Read Address 3C7h
Write Address -
Index -
Access Type R
Format 7 6 4 3 1 0
| R | SR
Fields Field Bits Description
R 7:2 Reserved
SR 1:0 State Register
rev. 1.03 08.03.00



207

Register overall description:
Reports the status of the color palette accesses.

Field descriptions:

State Register
0 = Color palette write register (CPWADDR) was accessed |ast
3 = Color palette read register (CPRADDR) was accessed last

CPMASK - Color Palette Mask Ioffset 0056h Standard VGA
Access Read Address 3C6h
Write Address 3C6h
Index -
Access Type R/W
Format 7 6 5 4 3 2 1 0
| CPM
Fields Field Bits Description
CPM 7:0 Color Palette Mask

Register overall description:
Color palette address lines can be forced to zero with this register.

Field descriptions:

Color Palette Mask

Thefinal color palette index is anded with this mask before the RGB value read from the

color palette register. Setting a bit in this field to ‘0’ clears the palette index's address line.
Usually this field is programmed to FFh to enable all the 256-color palette indexes.

rev. 1.03 08.03.00



208

9. Video Control

9.1 Overview
V S25203 provides afull internal video control logic unit. The video refresh logic supports
16-hit hi-color and 24-bit true-color display formats with all resolutions from 320 x 200 to
1600 x 1200 pixels. Note also that it is possible to use other screen ratios than the normal
4:3 screen aspect ratio. The only restriction is that blank areas have to be after a visible
area.

9.2 Refresh Timing
The following figure illustrates the relationship between horizontal and vertical timing
signals. Terms used in the figure are the fields of the video registers.

’\ hblank_end hblank_start
hsync_start /UThsynciend

\

puajueiqa

Visible area

0apIA

[ usamds

IRy UR[gA

J1e}s DUASA

N

X

AsA

1

video_w

pus oW

X

A

screen w

rev. 1.03 08.03.00



209

hbl ank_end, hbl ank_st art arefieldsof thevi deo_hbl ank register.
hsync_end, hsync_st art arefieldsof thevi deo_hsync register.

vbl ank_end, vbl ank_st art arefieldsof thevi deo_vbl ank register.
vsync_end,vsync_start arefieldsof thevi deo_vsync register.

vi deo_w, vi deo_h arefieldsof thevi deo_w_h register.

screen_w,screen_h arefieldsof thescr een_w_h register.

Refer to the video interface register definitions on page 211. Note that all count type

registers uses the convention of count-from-0, and not count-from-1; once the maximum
count is reached, the value wraps around to O.

9.3 640 x 480 Calculation Example

VESA standards have predefined timing parameters for a set of chosen screen resolutions.
For non-VESA resolutions, this section illustrates the procedures for determining the
values to be placed into the fields of the VS25203 video registers which are defined and
described on page 211.

The monitor manual’s spec page will usually give the following information:

HORIZONTAL VERTICAL
VIDEO
C D Q R
J SYNC J
B P
%ﬂ ﬁ
Horizontal:

A Scanline duration: 31.7748s

B Sync duration: 3.81f3s

C Back porch: 1.58@s

D Front porch: 0.958s

rev. 1.03

08.03.00



210

Vertical:
(0] Frame duration : 16.683 ms
P Sync duration : 64 us
Q Back porch: 1.017 ms
R Front porch : 350 pus
. 1
f, Vertical frequency: ————— =59.94 Hz
16.683ms

. Calculate the estimated display size, which is, as arule of thumb, about:

640 x 1.25 =800
480 x 1.25 = 600

. Calculate the clock frequency:

800 x 600 x 59.94 Hz = 28.8 MHz

. Horizontal front porch:

0.953ps x 28.8 MHz = 27 pixels

. Horizontal sync duration:

3.813ps x 28.8 MHz = 110 pixels

. Horizontal back porch:

1.589us x 28.8 MHz = 46 pixels

. Calculatevi deo_w:

640 + 27 + 110 + 46 = 823 pixels

. Vertical front porch:

350ps x 28.8 MHz = 10080 pixels

10080pixels

8231)ixe%"e =12lines

This means:

. Vertical sync duration:

64 ps x 28.8 MHz = 1843 pixels

1843pixels

8231)i,\’€].\' = 2 l Ines
line

This means:

. Vertical back porch:

1.017 ps x 28.8 MHz = 29290 pixels

29290 pixels

8237, =35lines

This means:

10. vi deo_h size:

480+ 12+ 2+ 35=529lines

rev. 1.03

08.03.00



211

11. Insert the values into appropriate registers:

screen_w=640 register 34, page 212
screen_h =480 register 34, page 212
vi deo_w=2823 register 33, page 212
vi deo_h =529 register 33, page 212
hbl ank_start =641 register 36, page 214
hsync_start =668 register 38, page 215
hsync_end =778 register 38, page 215
hbl ank_end =0 register 36, page 214
vbl ank_start =481 register 35, page 213
vsync_start =493 register 37, page 214
vsync_end =495 register 37, page 214
vbl ank_end =0 register 35, page 214

12. Caculate the clock coefficients for the desired clock frequency. The video clock
frequency can be calculated from the formula:

+2
Fopr = "= 22 x143181818MHz
(I’l_ COef + 2) X 2i_c0qf

where:
n_coef, m_coef and r_coef are count coefficients for the on-chip frequency
synthesizer.

Withm_coef =126, n_coef =14 andr_coef =2, we get a pixel frequency
of 28.6MHz.

13. Insert the coefficient valuesinto vi deo_cl k_cf g (18) register, page 33.

9.4 Video Interface Registers

Register address Offset Register name
33 0084h [video width_height
34 0088h [screen_width_height
35 008Ch |video_vblank
36 0090h |video_hblank
37 0094h |video_vsync
38 0098h |video_hsync
39 009Ch |video_base_conf
40 00AOh [video_bit_config
41 00A4h |reserved

rev. 1.03 08.03.00



212

[video_w_h |register 33 |offset 0084h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| video_h
video_h | video_ w
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
video_ w 10:0 video_width
video_h 21:11 video_height

video_w_h register specifies the size of the area scanned by the video-x and video-y
counters. The visible screen occupies a portion of this memory, starting from the (0,0)-
point.

video w

Specifies the last value which video-x counter reaches. This value is the total width minus
one. For example, if 800 is desired for the video total width, value 799 is specified in this
field.

video_h

Specifies the last value which video-y counter reaches. This value isthe total height minus
one. For example, if 525 is desired for the video total height, value 524 is specified in this
field.

screen_w_h

[register 34 |offset 0088h |

Format

Fields

31 30 29 28 27 26 25 24 23 2 21 20 19 18 17 16

| screen_h
screen_h | screen. w
5 14 1B 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description
screen_w 10:0 screen_width
screen_h 21:11 screen_height

screen_w_h registers specifies the size of the actual displayed screen. Pixels are sent to
the display as long as the values of video-x counter islessthan scr een_wand aslong as
the video-y counter islessthan scr een_h.

screen_w

Specifies the width of the displayed screen minus one. (See vi deo_w_h register 33,
vi deo_w field). For example, if 640 is desired for the screen width, value 639 is
specified in thisfield.

screen_h

Specifies the height of the displayed screen minus one. (See vi deo_w_h register 33,
vi deo_h field). For example, if 400 is desired for the screen height, value 399 is
specified in thisfield.

rev. 1.03

08.03.00



213

[video_vblank [register 35 |offset 008Ch |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
vblank_start
vblank_start | vblank_end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
vblank_end 10:0 vertical blank end
vblank_start 21:11 vertical blank start
video_vblank register specifies the timing of the vertical blank signal relative to the
video-y counter.
vblank_end
Specifies the video-y counter value which ends the vertical blank signal. This value is the
vertical blank end minus one. (See vi deo_w_h register 33, vi deo_h field). For
example, if 490 isdesired for the vertical blank to end, value 489 is specified in thisfield.
vblank_start
Specifies the video-y counter value which starts the vertical blank signal. This value isthe
vertical blank start minus one. (See vi deo_w_h register 33, vi deo_h field). For
example, if 410 is desired for the vertical blank to start, value 409 is specified in thisfield.
The blank area can be made to overlap the screen area. It is aso possible to initiadize
vbl ank_end to a lower value than vbl ank_st art . This causes the blank area to
wrap around the bottom of the video coordinates.
|vide0_hblank |register 36 |offset 0090h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| hblank_start
hblank_start | hblank_end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
hblank_end 10:0 horizontal blank end
hblank_start 21:11 horizontal blank start

video_hblank register specifies the timing of the horizontal blank signal relative to the
video-x counter.

hblank_end

Specifies the video-x counter value which ends the horizontal blank signal. This value is
the horizontal blank end minus one. (See vi deo_w_h register 33, vi deo_wfield). For
example, if 790 is desired for the horizontal blank to end, value 789 is specified in this
field.

rev. 1.03

08.03.00



214

hblank_start

Specifies the video-x counter value which starts the horizontal blank signal. This value is
the horizontal blank start minus one. (See vi deo_w_h register 33, vi deo_wfield). For
example, if 650 is desired for the horizontal blank to start, value 649 is specified in this
field.

The blank area can be made to overlap the screen area. Also it is possible to initialize the
hbl ank_end to lower value than hbl ank_st ar t . This causes the blank area to wrap
around the right edge of the video coordinates.

[video_vsync [register 37 |offset 0094h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| vsync_start
vsync_start | vsync_end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
vsync_end 10:0 vertical sync end
vsync_start 21:11 vertical sync start
vsync_end
Specifies the video-y counter value which ends the vertical sync signal. This value is the
vertical sync end minus one. (See vi deo_w_h register 33, vi deo_h field). For
example, if 480 isdesired for the vertical sync to end, value 479 is specified in this field.
vsync_start
Specifies the video-y counter value which starts the vertical sync signal. This value is the
vertical sync start minus one. (See vi deo_w_h register 33, vi deo_h field). For
example, if 420 isdesired for the vertical sync to start, value 419 is specified in thisfield.
The sync area can be made to overlap the screen area. It is also possible to initialize the
vsync_end to alower value than vsync_st art . This causes the sync area to wrap
around the bottom edge of the video coordinates.
[video_hsync Jregister 38 |offset 0098h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| hsync_start
hsync_start | hsync_end
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
hsync_end 10:0 horizontal sync end
hsync_start 21:11  |horizontal sync start
hsync_end

Specifies the video-x counter value which ends the horizontal sync signal. This value is
the horizontal sync end minus one. (See vi deo_w_h register 33, vi deo_w field). For
example, if 780 is desired for the horizontal sync to end, value 779 is specified in this
field.

rev. 1.03

08.03.00



215

hsync_start

Specifies the video-x counter value which starts the horizontal sync signal. This value is
the horizontal sync start minus one. (See vi deo_w_h register 33, vi deo_w field). For
example, if 660 is desired for the horizontal sync to start, value 659 is specified in this
field.

The sync area can be made to overlap the screen area. Also it is possible to initialize the
hsync_end to lower value than hsync_st art. This causes the sync area to wrap
around the right edge of the video coordinates.

|Vide0_base_conf |register 39 |offset 009Ch |
FOI‘mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| mh
mh | | scr_addr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

scr_addr 13:0 Screen base address

mh 21:15  |Screen memory height

The video_base_conf register contains information about how the screen datais stored in

the memory.

mh

The screen memory height can be calculated with the following formulas:
mh = Screen height / SIZE

16-bit pixels: SIZE = 32

32-bit pixels: SIZE = 16

scr_addr
Specifies the start address of the screen memory as a multiple of 2048 bytes.

rev. 1.03 08.03.00



216

[video_bit_config [register 40 |offset 00AOh
FOl'n‘lat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
fhbm Jvwm |dpl Jdpp]| dt [hbp]vbp| hspfvsp| pw
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Fields Field Bits Description

pw 0 Pixel width 16-bit / 32-bit

vsp 1 Vertical sync. polarity

hsp 2 Horizontal sync. polarity

vbp 3 Vertical blank polarity

hbp 4 Horizontal blank polarity

dt 5 DAC test (Reserved)

dpp 6 Duplicate pixel

dpl 7 Duplicate line

vwm 8 Video width msb

hbm 9 Hblank width msb

video_bit_config register contains a collection of bits used for configuring the behavior
of the video interface.

pw
0 pixel widthis 16 bits

1 pixel width is 32 bits

vsp

Specifies the polarity of thevsync signal.
hsp

Specifies the polarity of the hsync signal.
vbp

Specifies the polarity of thevbl ank signal.
hbp

Specifies the polarity of the hbl ank signal.
dpp

If set to one each lineistwice. Useful for displaying low resolution screen on a high
resolution display

Dpl

If set to one each pixel displayed twice. Useful for displaying low resolution screen on a
high resolution display

vwin

MSB for video width register (Added to cover high resolution modes)

hbm

MSB for horizontal register (Added to cover high resolution modes).

rev. 1.03

08.03.00



217

10. TV Output Unit

10.1 Overview

10.2 Usage

TV output unit works parallel with video refresh and can be turned on/off whether TV-
signaling is used. Required screen size as well as synchronization signaling for the TV are
programmed to the Video refresh block. Video-refresh output is fed to TV-output unit that
performsinterlacing and flicker filtering to produce final output signaling.

The TV-output unit is controlled through PCI Configuration Space Register 21
(feat _reg). The TV-output unit isturned on by setting f f e field. This starts
interlacing process as well as flicker filtering. Flicker filter threshold (field f f t ) is
adjustable and there exists also 100 Hz TV set flicker filter enhancement field f f m

Note: Flicker filter halves the line frequency and doubles the horizonta blank time. It
does not add the horizontal sync. This must be taken into account when setting the video
parameters.

10.3 TV Output Unit Register

PCI Configuration Space Register 21, feature register, is presented below.

[feat_reg [register 21 |offset 0054h
Fomlat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ddv|euio
ffe | ffm| | fft | | vee| vrsi] vrs | vde
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ddv 17 disable digital video
euio 16 enable user I/0 [6:5]
ffe 15 flicker filter enable
ffm 14 flicker filter mode
fft 12:8 flicker filter thresh
vee 3 VGA extension enable
vrsl 2 VGA refresh select lock
VIS 1 VGA refresh select
vde 0 VGA decode enable
rev. 1.03 08.03.00



218

ffe

Flicker filter enable, abit for activating the flicker filter and interlace module.

ffm

Flicker filter mode, affects the mode of operation for the flicker filter.

0 default value, optimal in most cases.

1 modified algorithm, which might provide better results on 100/120 Hz televisions.

fft

Flicker filter threshold, threshold value for flicker filtering O means no threshold (filter
always), 16 means no filtering (perform interlace conversion still).

rev. 1.03

08.03.00



219

11. Video Capture Unit

11.1 Overview

The video capture block is totally independent functiona block, which stores data
captured through digital RGB pins into on-board memory for further use. 4:2:2 YUV data
format described in ITU-R BT.656-3 standard is supported.

11.2 Usage

The video capture unit takes the inputs from digital RGB (set the disable digital video-bit
to "1" from the Feature Register, register 21) and user_io[0] pins. When 8 bit mode is
used captured data is read from pin b[7:0] and in 16 bit mode 8 MSB bits are read from
g[7:0].

ITU-R BT.656-3 standard capture data stream contains information about vertical and
horizontal synchronization, but optionaly external synchronization can be used
(capt _w_h -register ssel -field). Vertical synchronization is read through r[1] pins and
horizontal r[O] respectively. The Rising edge of these signals is considered as start of the
line/field (hor/ver). When using this mode current field information is carried in r[2] pin.

The video capture unit uses external clock that is driven through user_io[Q] pin. Capture
data sampling is done at the rising edge of this clock. The capture unit is working up to 35
MHz (capture clock). If capt _w_h -register bit cq is on, data sampling is done when
clock qualifier signal r[3] is active.

Captured data is stored in 4:2:2 YUV format into on-board memory location defined by
capture base address.

If the interrupts are enabled (capt - base-conf-regi rql andi r g2 fields), the video

capture unit indicates its interrupts by setting capi field of st at us (48) register. The
interrupt can be acknowledged by writing 1 to the same field.

11.3 Video Capture Unit inputs

Input Description

b[7:0] capture _data in[7:0]

g[7:0] capture_data in[15:8] if 16-bit mode is used

r[0] vertical sync_in (if ssel bit is set)

r[1] horizontal sync_in (if ssel bit is sat)

r[2] field information (contains the field (odd/even) field
identification) O during fieldl, 1 during field2 (if ssel
bit is set)

3] clock qualifier

user_io[Q] capture _clk

rev. 1.03 08.03.00



220

11.4 Video Capture Unit Registers

|Register address  |Offset |Register name |
31 007Ch |capt_base_conf
32 0080h [capt_w_h
|capt_base_conf |register 31 |offset 007Ch

Format

Fields

31 30 29

28

27

26 25 24 23 22 21 20 19 18 17

16

ena |irq1 irq2 |

I mem_height

15 14 13

12

11

10 9 8 7 6 5 4 3 2 1

Field Bits Description

ena 31 video capture enable

irql 30 Interrupt request 0 enable
irq2 29 Interrupt request 1 enable
mem_height 22:16 Memory height
base_addr 13:0 Base address

capt_base_conf contains control bits for video capture block.

ena

Video capture enable/disable (1/0).

Irql

Thisfield enables/disables interrupt of detected odd fields from the capture source.

Irq2

Thisfield enables/disables interrupt of detected even fields from the capture source.

mem_height

Thisfield gives the memory height of the target in 2048 byte blocks.

base_addr

The capture base address specifies the start address of the capture memory as multiple of

2048 bytes.

rev. 1.03

08.03.00



|capt_w_h |register 32 |of-fset 0080h |
FOI'mat 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
cdt| cq |ssel| dei| cap_height
cap_width
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
cdt 31 Capture data type
cq 30 capture clock qual
ssel 29 capture sync hs vs
dei 28 capture deinterlace
cap_height 26:16  |capture height
cap_width 9:0 capture width

capt_w_h contains information to control the video capture block. For typical ITU-R
BT.656-3 standard usagecdt =0,cq=0andssel =0.

cdt

The capture data type

0 8 bit

1 16 hit.

cq

Selection hit whether the clock qualifier input is used in data synchronisation.
ssel

Selection bit whether the synchronisation signals are used during capture process.
dei

This bit defines whether both of the fields are captured or the odd frame duplicated and
capture isdone at half speed.

Cap_height

Cap height defines the video capture area height in pixels.

Cap_width

Cap width defines the video capture area width in pixels.

rev. 1.03 08.03.00



222

12. Block Transfer Unit

12.1 Overview

12.2 Usage

Vv S25203 includes totally independent Block Transfer Unit, which performs area fill and
copy operations as well as bit copy operations.

The Block Transfer Unit is controlled by register 56 - 63. After writing the register 63 the
unit starts the operation defined by other register. Status information can be read from
stat us register (register 48) bl ti field. Byte base addressing is used with all the
Block Transfer Unit addresses.

12.3 Block Transfer Unit Registers

Register Number | Address Offset |Register name |Description
56 00EGh blt src srd Source gtride
57 00E4h blt_tgt strd Target dride
58 00ES8h blt fg color Foreground color
59 00ECh blt_bg_color Background color
60 00FCh blt_params Paramaers
61 00F4h blt src addr Source address
62 00F8h blt_tgt_addr Target address
63 00FCh bt sze Block size
[blt_src_strd |register 56 |offset 00EOh
Format 31 30 29 28 27 26 24 23 22 21 20 19 18 17 16
| x64_source_stride
| Y_source_stride
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
x64_source_stride |23:16 Source stride of x-direction
Y source_stride |12:0 Source stride of y-direction

blt_src_strd contains information block source strides.

X64_source stride

Thisfield gives x-direction offset for physical memory address.
Y_source_stride

Thisfiels gives the offset for physical memory when stepping in y-direction.

rev. 1.03

08.03.00



223

[blt_tgt_strd [register 57 |offset 00E4h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| x64_target_stride
| Y_target_stride
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
x64_target_stride |23:16  |Target stride of x-direction
Y_target stride  |12:0 Target stride of y-direction

blt_tgt strd containsinformation block target strides.

X64 _target stride
Thisfield gives x-direction offset for physical memory address.

Y_target stride

Thisfiels gives the offset for physical memory when stepping in y-direction.

[blt_fg color

Format

Fields

|register 58 |offset 00ESh
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
fg color
fg color
15 14 13 12 11 10 9 8 7 6 5 4 3 2 0
Field Bits Description
fg_color 31:0 Foreground color
BIt_fg_color contains information about foreground color when making bit copy
operation.
Fg_color

Specifies foreground color. When using 16 or 8 bit color modes the whole register should
be filled by duplicating the desired color. Alternatively different colors can be specified
for the vertical lines on the screen by specifying different valuesto the 8 and 16 hit

sections of the register.

[blt_bg _color

Format

Fields

[register 59 |offset 00ECh
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
bg_color
bg_color
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Field Bits Description
bg_color 31:0 Background color

Blt_bg_color containsinformation about background color when making bit copy

operation.

rev. 1.03

08.03.00



224

Bg_color
Specifies background color. When using 16 or 8 bit color modes the whole register should

be filled by duplicating the desired color. Alternatively different colors can be specified
for the vertical lines on the screen by specifying different valuesto the 8 and 16 bit
sections of the register.

[blt_params |register 60 |offset 00FOh
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
| blt_operl | pxl_type
15 14 13 12 1 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
blt_oper 9:8 Block transfer operation
pxL_type 1:0 Pixel type
BIt_params contains general information for Block Transfer Unit.
BIlt_oper
Defines the operation:
00 fill
Fill the target are with foreground color.
01 copy

Copies data from the source area to target area.
10 bit copy (fg and bg)
Makes bit copy operation using both foreground and background color
11 bit copy (only fg)
Make hit copy operation using only foreground. Background bytes are left empty.
Pxl_type
Defines pixel type for operation:
00 8 hit (VGA)
01 16 bit (3D)
10 32 hit (3D)

[blt_src_addr [register 61 |offset 00F4h
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
src_addr
src_addr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
src_addr 310 Source address

Blt_src_addr contains address for source data.
Src_addr The byte address for the first source byte to be handled.

rev. 1.03 08.03.00



225

[blt_tgt addr [register 62 |offset 00F8h |
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
tgt_addr
tgt_addr
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
tgt_addr 31:0 Target address
BIlt_tgt addr contains address for target of data.
Tgt _addr The byte address for the first target byte.
[blt_size [register 63 |offset 00FCh
Format 31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
ydir height
xdir width
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
Fields Field Bits Description
ydir 31 Y direction
height 26:16 height of the block
xdir 15 X direction
width 10:0 width of the block
BIt_size contains information about the block size and direction of the specified
operation.
ydir definesy direction for the operation.
0 from top to bottom
1 from bottom to top.
xdir defines x direction for the operation.
0 form left to right
1 fromright to left

height defines the height of the block.
Width defines the width of the block.

rev. 1.03

08.03.00



226

13. Internal / External DAC

V S25203 contains an internal triple 8-bit Video DAC, which has a maximum operating
frequency of 200MHz.

It isalso possible to use an external Video DAC with the following features:
triple 8-bit D/A converters
TTL compatible inputs
construction optionally +5V or +3.3 V.

rev. 1.03 08.03.00



227

14. Application Notes

14.1 PCI Bus Rerference Design
14.1.1 Introduction

The schematic examples and layout guidelines referred in this section are intended for
engineers implementing the VS25203 board. The information presented here is for
reference only and is subject to change. Designers should contact VLS| Solution for the
latest schematics and further information before production.

The schematics represent a sample PCl Bus implementation of V S25203 with detailed
discussions of components and their board placement. The layout discussion provides
guidelines for specific layout issues such as analog and digital ground separation and
recommended trace width restrictions.

14.1.2 Power-Up Configuration Summary

On system reset or power-up, the video subsystem configuration information is latched

into VS25203’s internal configuration registers from the data stored in the on-board
EPROM. This data is read using the pixel bus data lines, BTBJ[0..7] for data and
BTR[0..7] and BTGJO0..7] for address. The EPROM is enabled with the USE_ROM signal
from VS25203. The on-board Video BIOS contains data for the following:

Enable VS25203
Program DAC/Clock to a value of 90MHz
Set display memory data path width (32 or 64 bits) and DRAM type

14.1.3 Content of EPROM

The last eight addresses from the EPROM are automatically loaded into the internal
registers as follows:

0 subsystem vendor id bits 7:0
1 subsystem vendor id bits 15:8
2 subsystemid bits 7:0
3 subsystemid bits 15:8
4 menory config reg bits 7:0
5 menory config reg bits 15:8
6 menory config reg bits 23:16
7 menory config reg bits 31:24

(address 7 means the last address of the EPROM)

The last 8 addresses are implemented by VS25203 to access locations FFF8h — FFFFh. If
a 32KB or smaller EPROM is used the top-most address bits are ignored. The maximum
EPROM size is 64 KB. The EPROM contents can also be accessed using the normal PCI
expansion ROM access mechanism. The EPROM address is provided by the digital
Red/Green/Blue (RGB) pins so that the R-bus contains the top (MSB) bits, and G-bus the
lower (LSB) bits. B-bus is used for reading the data.

rev. 1.03

08.03.00



228

14.1.4 PCI Bus Interface

VS25203 is designed for a glueless interface to the PCl bus. The pins on VS25203 are
directly connected to similarly named pins on the PCI bus. Thisis summarized below.

PCI Signal Names
Address/data bus AD[31..0]
C/BE[3..0]#
PAR
Control FRAME#
STOP#
IRDY#
TRDY#
IDSEL
DEVSEL#
System CLK
RST#
Bus Master Control REQ#/
GNT#
Interrupt INTA#
Error Reporting PERR#
SERR#

The pin assignments on VS25203 are carefully optimized to allow short and direct
connections between the bus pins and VS25203 pins. VS25203 should be placed within
an inch of the PCI connector and approximately centered on the connector.

14.1.5 Memory Interface
VS25203 features a fully integrated 64-bit synchronous DRAM memory interface.
VS25203 supports 256K x16 EDO DRAM, SDRAM and SGRAM memory chips. The
memory size can range from 2 MB to 32MB.
Memory timing adjustment through software will be clarified in the next revision.

DRAM Interface Signal Names

Signal Name BankA BankB
Address AAQ[11..0] BAO[11..0]
Data ADQ[15..0] BDQI15..0]
Control ARAS BRAS
ACAS BCAS
AWE BWE
ACSO BCSO
AMEMCLK BMEMCLK
ADQM[3..0] | BDQM][3..0]

rev. 1.03 08.03.00



229

14.1.6 Monitor Interface

Proper signal conditioning with carefully selected component values is critical for
providing good crisp video at high frequencies and minimizing EMC (radio frequency
interference) emissions.

RGB Lines

RGB lines are nominally terminated in 75Q to DAC ground, thus providing half of the

37.5Q DC load; the other half is in the monitor. Z filters on each RGB line control edge

rates and reduce EMC to an acceptable level. The z filter's cutoff frequency should be as
high as possible to prevent signal degradation but as low as possible to provide for
reduced emissions. The (35RGB termination resistors should be located as close as
possible to VS25203 and the Z filters should be located very close to the output DB-15
connector. The traces between VS25203 and the filters should be direct, with no vias or
sharp corners. These traces must be designed with a characteristic impedance as close as
possible to 78. During high refresh rate operations, the signal edge rates are fast enough
that a trace as short as a few inches begins to behave as a transmission line.

Sync Lines

The hsync andvsync signals are isolated with in-line @5resistors. Future VS_VP
reference designs will rely on LC filters of ferrite bead(@1dt 100 MHz) and 220-pF
capacitor to further reduce EMC emissions. The LC filter outputs connect directly to the
DB-15 output connector.

DDC2B Support

The graphics subsystem requires information on the monitor's display capabilities for
selecting optimum refresh rates. This information is obtained from the monitor via a
serial bi-directional bus from VS25203 to the monitor. VS25203 provides a serial clock
(SCL) and reads serial data (SDA) from a VESA DDC2B compliant monitor.

14.1.7 Power Distribution and Conditioning

The most common reason for poor quality video is the failure on the part of the board
designer to properly manage power distribution and conditioning. For this reason,
dedicated power and ground planes are very strongly recommended for boards based on
VS25203.

VS25203 operates at 3.3 V supply power. PCI bus and video interfaces are also 5 V
compatible. Selection is done with pin A6, (AGP / PCI). When using 5 V interfaces
additional 5 V pad power is fed through pins D4 and AA11, (VDD_Clamp).

rev. 1.03

08.03.00



230

Decoupling capacitors

Bypass capacitors are used to minimize power sags caused by current spikes and reduce
the power distribution impedance. Bulk bypassing is present in the area where power
comes onto the board, around the DRAM array, and near the EPROM. The bulk bypassis
usually a tantalum or an aluminum electrolytic capacitor which at very high frequencies
becomes inductive, rendering it unsuitable for fast switching signals. For this reason local
bypassing capacitors are distributed as needed next to each high-speed IC. When an un-
bypassed I C switches current into aload, the current comes from the supply line, exits the
output pin, and flows through the load into the ground line. Any series impedance in the
supply and ground lines causes large local glitches in both lines. The role of the bypass
capacitor isto supply fast transient currentsto the | C, so they do not have to come through
the supply-line series impedance.

A bypass capacitor can do its job efficiently only if it is mounted in close proximity to the
pins that draw the fast transient currents. And if it is some distance from the IC, the series
inductance of the PCB traces gives the transients an opportunity to develop glitches. For
this reason uncased multilayer ceramic (MLC) surface mount components are used
exclusively in the design. High operating frequencies of the VS25203 board are affected
not only by the inductance due to the length of the PCB traces but also the lead length of
the bypass capacitors.

Dedicated Ground Plane

A dedicated ground plane minimizes differential ground offsets and more nearly
approximates the ideal notion of ground. Additionally, a ground plane is necessary to
predict and control the characteristic impedance of those traces that must be treated as
transmission lines.

Analog and digital ground separation is very critical for mixed signal devices such as
VS25203. The ground plane on the VS25203 design has cuts to partially isolate the
critical analog ground sections from the relatively noisy digital ground associated with
SDRAM memory and the PCI bus interface. The schematic reflects three ground planes, a
digital ground and two isolated analog grounds; one for the DAC and one for the clock
synthesizer. Traces for analog grounds should not have any digital connections.

14.1.8 Clock Synthesizer

VS25203 on-chip clock synthesizer requires a quartz crysta of the following
characteristics:

Crystal characteristics

Frequency 14.31818 MHz +/- 0.1%
Fundamental resonance

ESR 25 to 45Q

Load Capacitance 15 to 40 pF, parallel resonance

The crystal should be connected across Osc in (pin A4) and Osc_out (pin C6) of
VS25203. If a 14.318 MHz oscillator is used instead of a crystal, then the clock output of
the oscillator should be connected to Osc_in only, and Osc_out should be left open. If a
crystal is used, both sides of the crystal should have soldering pads to allow grounding of
the case and attaching of the crystal to a quiet ground plane. The parallel resonant crystal
requires 22pF balance capacitors and a IMQ shunt resistor to initiate stable oscillation.

rev. 1.03

08.03.00



231

15. Pinouts and Signal Descriptions

15.1 Pinout

The following two figures describe the pin configuration of VS25203. The chip is
packaged in a 304-pin thermally enhanced ball grid array (BGA) package. Signals are
grouped so that pins for external memory chips are on both sides of V S25203, pins for the
PCI bus are on the lower part of the processor and the remaining pins (DAC, PLL, Osc,
etc.) are on the upper part.

To reduce communication delay, it is recommended putting the external memory chips on
the right hand side and on the left hand side of the processor.

23 22 219 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1
ue  |us_io |vsync_ cdk_ |dk_ |AGPP|VDD_ |Ox_ GND_

Alsa |Bu |82 |B[s] |RO] |RZ |R(4 R |G |Gl8] | @2 |in vome |POLK | e far o |in vief | -~ [BCSI3|A
B Q]C‘% /:]CS#[ B3 |eel [Ry |RE R |elo) |c@ |clel Fg]r,io EJO :?’"Cf chlank ;"ﬂq cyne ZLde"f ;ﬁDf ::zf gr:sof IGreen |IBlue ]BCS#[ZB
ADQ |ADQ VDD_ |GND_ us_jo |us_io |GND_ |usr_iof [VDD_ filter_ |Osc_ VDD_ |BDQ |BDQ [BDQ
Cliay |z [B@ [BI7 |core |core |RE |G |G |67 |17 [4” [core le~ |core ™™ |video |ow 'R aec  |joor [jon” [z~ |©
p |roe |ADQ [ADQ ADQ VDD AGND_ |VDD_PIGND_ [VDD_AGND_ |VDD_AVDD_AVDD_FVDD_PIGND_ [Pros_ Rres |OND_ [VDD_ [GND_ [BDQ [BDQ (1
[29] [28] [27] [26] |ADv |dig ADv |dig ADv |dig ADv |ADv |ADv |ADv |dig dk dig Clamp |digb  [[03] [04]

g [P0 [ApQ |ADQ jGND_ VDD_ABDQ [BDQ |BDQ |
25 |[24 |23 |[diga ADb |[05] |[06] [[07]

F JA0Q |ADQ |ADQ (VDD A GND_ |BDQ [BDQ (BDQ |-
221 |20 |20 [ADa digo |[o8] [[09] |[10]

G |Ape [ADQ |ADQ |en_ voD_ABDQ [BDQ |BDQ -
29 (18 |27 |diga ADb (11 [[12] |[13]

H [roQ |Amem (Amem |voD A VDD_ABDQ |BDQ [BDQM
[16] |dk [dkin [ADa ADb |[14] (18 [[3]

GND_ [GND_ \VDD_ |GND_ |BDQM
J JAWEH |ARASH e diga CORE |CORE [[2] BALI
[ADQM |ADQM VDD_ GND_
K (0 1 ACASH e V825203 icp BA[10] |BA[09] | BA[08] | K
VDD_H \vDD_AVDD_A
L |Aarooaajor)| Aoz, - ) ADb | aDp ~ |BALO7 [BALOS]|L
] I e Bottom View 0ot s
vDD_FVDD_H \vDD_H
i s P .
P JAA[08] [AA[09] [AA[10] dga core [BCAS 1] [ P
ADQM |GND_ [vDD_ GND_ |GND_

R [l [21  |CORE |CORE digh | core |BRASY|BWEH R
1 [Pou[aDQ |apQ |voD A [VDD_FBmem (Bmem |BDQ (-
[3 [15] [[14] [ADa [ADb  |ckin [dk  [[16]

u Jroe Ao |apq fvop A GND_ [BDQ |BDQ (BDQ |||
13 (121 |y |Apa digo  |[27] [(18 |[29]

v |ApQ [ADQ |ADQ |aND_ VDD_ABDQ |BDQ (BDQ |y,
[10] |[09 |08 |diga ADb  [[20] |21 |22
wlroe |apa (apq vep A GND_ [BDQ [BDQ |BDQ |p
[07] |06 |[05] [ADa digo  |[23] (24 |[25]

y |ApQ |ADQ |GND_ |VDD_AGND_ |VDD_ (VDD_AGND_ |GND_ [VDD_AGND_ |VDD_ [VDD_AGND_ |VDD_AGND_ VDD_FGND_ |VDD_ABDQ [BDQ [BDQ (BDQ |\,
[04 |[[03] |dga [ADp |digp |CORE |ADp |[digp [digp |ADp [CORE |CORE [ADp |digp [ADp |CORE [ADp |[digp |ADp |[26] |[[271 [(28 |[29]
AAJRDQ |ADQ |ADQ [GND_ [PCIA |PCI_C/|PCI_A VDD_FIFCI_A |VDD_ (GND_ |GND_ |VDD_ PCI_A [PCIA |VDD_ [VDD_FAGND_ |GND_ [PCIA (PCI_ [BDQ [BDQ [aa
[02] |0y |[00] [core |D[o6] |BE#0]|D[11] [ADp |D[15] |CORE [digp |CORE [Clamp |D[17] [D[21] |CORE [ADp |[digp |digp |D[29] |cLK [[30] (31
ABJACS |FCLA |PCLA [PCIA |PCLA [PCIA [PCIA |PCILA |FCI_ - [PCI *D“E'\75E PCI_ |PCI_C/|PCIA [POLA |FCIA |PCI_C/(PCLA |PCIA [PCIA PCI_ |BCSH1IBCSHO o g

2] D[0o] |D[o2] |D[os] |D[o7] |D[09] |D[12] |D[14] |PAR |PERR¥| ,  |IRDY#|BE#[2|D[1§) |D[20] |D[23 |BE#[3]|D[25 |D[27] |D[30] [GNT# |] 1
AC|ACS |FCLA [PCA [PCI_A |PCLA |PCIA [PCIA |PCLC/|PCI_ [PCI_ ;LRISV ;};M PCLA |PCIA |PCIA [PCI_ |PCIA |PCIA [PCLA |PCLA [PCI_ PO |PC_ |4
3 D[o1] |D[03] [D[o4] |D[og] |D[10] [D[13] |BEA{1] [SERR#|STOPY|,, . |D[e] [ppg |22 [IDseL |Dj24] |D[26] [Dl28] |D[31] [REQ# [RST# |INTA#

rev. 1.03 08.03.00



232

1 2 3 4 5 6 7 8 9 10 1 12 13 14 15 16 17 18 19 20 21 22 23
A ]BCS“B ﬁDf Vref ﬁ‘cf ;’/EDf ’éIGP’P g'ﬁ] g‘EB] PCLK [veyne :’r?’”cf E‘;JO :J;% e |e (R [Ra [Ra (RO B (B Bl (B
B ]Bmzualue IGreen gr;o_ g'l:— Sj’:D— ZL‘H’— cyme ;3—“’[ chlank :?’”C— E—io Fg}—“’ cle] |o3 |0 |Rsl |R@E [R |Blel [Bi3 ’l*]CS#{ OA]CS#[
BDQ [BDQ [BDQ |VDD_ ox_ [filter_ VDD_ |us_iof |GND_ |us_io |us_io GND_ [VDD_ ADQ |ADQ
Cloz oo loa [ | foan™ [video | |core g~ |core | |~ [#7 |4 | (RO |oore |oore B (B4 oo ey
p |Eoe [eoe [eno_fvoo_fono_ | pros |GND_ [vbp_Avbp_Avpp_Hvop_Aenp_ [vbp_Aenp_ [vop_Aeno_ [vop_AabQ [abQ |aDQ |ADQ
04 |03 [digo |Clamp |dig e ok [dg [aDv™ |aDv |aDv” |aDv |dg  |ADv |dg  |aDv |dg  |aDv |i26] [i271 [i281 (129
g [eoe [eoQ [eoo fvoo d onD_ [ADQ [aDQ [ADQ
[07] |[06] ][05] |ADb dga [[23] [[24] [[25]
£ [Eoe [Eoe [Boo feno_ vbD_HADQ [aDQ [aDQ
[10] |[09] |[08] |digb ADa [[20] |21 [[22]
G |oe [Eoe [Eoe |voD A oND_ [ADQ [aDQ [aDQ
[13] |[(12] |[11] |ADb dga |[17] |[18] [[19]
w |Eoouee [eoo fvop A vDD_HAmem [Amem [aDQ
3 s |4 |abb ADa [ckin [ok  [[16]
BDQM |GND_ [vDD_ GND_ [GND_
J BAL| 5 | core |core dga  |coRE [ARASHAWE
GND_ \VDD_ ADQM |ADQM
K [BA[08][BA[09] [BA[10] dgb V325203 core [ACAS [ [
VDD_PVDD_H VDD_A
L [eatoel |BAL071 |, oo~ | aop - aDa |AA1021[AA[o1 |AA[o0]
M [BA[03]|BA[04] |BA[0S] ggg’— Top VleW ggaD— AA[05] | AA[04] | AA[03]
VDD_H \vbD_HvDD_H
N JBalool [Bafow |BAL0z] |, o= V2P aajo7]| Aajos]
BDQM |BDQM CED (PINS DOWN) gz; =
P (o [ BCAS#| o one dga AA[10] [AA[09] |AA[08]
GND_ [GND_ \VDD_ [GND_ [ADQM
R [BWE# [BRASH| ore |dign coRE |core [z |
1 [eoe [Brmem [Bmem |voo A vDD_HAADQ [ADQ [AaDQM
[16] |dk [dkin |ADb ADa |14 |18 |31
u |Eoe [eoe [BoQ jeno_ vbb_HADQ [apqQ [apbq
o |8 |7 [digo ADa |11 |12 |3
v |Boe [Eoe [eoe |voD A onD_ [aDQ [apQ [apg
[22] |[21] |[20] |ADb dga [[08] [[09] [[10]
w e [eoe [Boo [eno_ vbb_HADQ [apqQ [abq
125 1241 123 |digo ADa [[0s] |08 {07
vy |Boe [Boe [BoQ [BDQ |VDD_FGND_ [VDD_AGND_ VDD AIGND_ |[VDD_AVDD_ [GND_ [VDD_PIGND_ |GND_ |VDD_AVDD_ [GND_ [VDD_FGND_ [ADQ |ADQ
[29] [28] [27] [26] |ADp |digp |ADp |CORE |ADp |digp |ADp |CORE |CORE |ADp |[digp |digp |ADp |CORE [digp |ADp |[diga |[03] [04]
aalEoQ [BoQ [P [Poia fenp_ fanp_ [vbp_AvoD_ [Poia [Pol_a (VDD_ [GND_ [GND_ {VDD_ [PCi_A [VDD_ARCIA fRo_C/|PCA [GND_|ADQ  [ADQ  (ADQ
3] |30 [cik |pp29) [dign [dgp  [ADp  [cORE [Di21] [p[a7) |Clamp |CORE |dign ~ |cORE |D[15] |ADp  |D[11] |BE#0]|D[06] |CORE |(00] {01 |[02)
aplEcsqecsitlro [poa [ror_a [ror_a fro_arfpaa [poLa [Poa [ror_arfror ;’sﬁ ra_ |pol_ |Poi_a [roi_a [Poi_a [Poi_a [Poi_a [roi_a [Poi_a [acsy
I ] GNT# |D[30] [D27] |p[25] [BEA3) |DI23] [Dre0) |plig) |BEAZ) [IRDY#|; PERR#|PAR  |D[14] |D[12] [D[0g] [D[07] [D[05] |D[02] [D[og] (2]
acle- [rou [roL [poiareiafroia froia [rol [poia [poia [roia ;’A—M '?I;I[;Y ra_ |rol [P _crrora [roa [roa [roa [raa [ro A [acsy
iNTA#|RsT# |REQ# |D[3y |pi2g) |pi2s] |pie4) |ipseL |or2z) |ong) oie) [T | sTop¢|sErRé|BEA(1] [D[13] [D[10) |Dl08) |D04] |Dl0og) |plo1] |3)
rev. 1.03 08.03.00




233

15.2 Signal descriptions

The signals for the VS25203 device are described in this section. The following tables list
each signal, its pin location, the operating mode (input, output, analog, power) and
provide some descriptions. The signals are grouped according to their functional purpose.

15.2.1 External DAC Signals

External Video DAC Pin Signals

Signal name Pin | Mode |Description

B[0] A23 1/0__ |8-bit data bus for blue color / BIOS data. this busis used as the data bus (input)
B[1] A22 1/0  |when performing ROM accesses. It is also possibleto utilize it as an extradigital
B[2] A21 1/0 |input resourceif the digital RGB outputs are not used.

B[3] B21 | 1/0

B[4] c1 | 1o

B[5] A20 1/0

B[6] B20 1/10

B[7] C20 1/10

chlank B10 O |Composite-blanking signal, created from the horizontal and vertical blank signals.
csync B8 O |Composite sync signa out, created from the horizontal and vertical sync signals.
G[0] B16 O |8 hit databusfor green color / BIOS low order bits address. It is used as the low
G[1] C16 O |order address bits when performing ROM accesses. It is aso possible to utilize
G[2] Al15 O |thebusasan extradigital output resource if the digital RGB outputs are not used.
G[3] B15 O

G[4] C15 (@)

G[5] Al4 0

Gl6] B14 (0]

G[7] Cl4 O

hsync C8 @) Horizontal sync signd.

PCLK A9 O  |Delayed clock signal for external DAC.

R[Q] A19 O |8 hit databusfor red color / BIOS high order bits address.

R[1] B19 O |Thisbusisused asthe high order address bits when performing ROM accesses.
R[2] A18 O |ltisalsopossibleto utilizeit asan extradigital output resource if the digital RGB
R[3] B18 O |outputs are not used.

R[4] Al7 0

R[5] B17 0

R[6] C17 (@)

R[7] Al6 0

VSync A10 O |Vertica sync signal.

rev. 1.03 08.03.00



234

15.2.2 PLL Signals

PLL Signals

Signal name Pin | Mode |Description

clk tst[Q] A8 [ clk_tst[O] configures the direction of the Video_clk pin.

clk tst[1] A7 | clk_tst[1] configures the direction of the Pros_clk pin.
clk tst[1:0]=00 internal PLL generated clock pins are not active.
clk_tst[1:0]1=01  clock pinsused as clock inputs.
clk_tst[1:0]1=10  internal PLL generated clock pins used as outputs.
clk_tstf1:0]=11  reserved.

filter pros B5 O |CorePLL external RC loop filter, typical component values C=100nF, R=400 chms.

filter video Cc7 O |Video PLL external RC loop filter, typical component values C=100nF, R=400 ohms.

Pros clk D8 I/0 |Processor clock. Normally not connected, can be used either asaclock input or asa
clock output depending on the clk_tst signals.

Video_clk | B7 | 110 |Video clock. Normally not connected, can be used either asaclock input or as a
clock output depending on the clk_tst signals.

OsC in A4 | analog |External chrystal connection for the interna clock generator.

Osc_out C6 | andog |Typical crystal frequency is 14.3181818 MHz.

15.2.3 Internal Video DAC Signals

Internal Video DAC Pin Signals

Signal name Pin_| Mode |Description

hsync in B11 | Horizontal synchronization input. V S252 will detect the transition from non-active
to active state on thisline, and synchronize its internal operation to it.

vsync_in [A11 ]| | Vertical synchronization input. V S252 will detect the transition from non-active to
active state on this line, and synchronizeitsinternal operation to it.

IBlue B2 O |Blue, green and red analog (current mode) outputs; RS-343-A compatible.

1Green B3 O

IRed C5 @)

Rres D6 | anadog |Resistor reference of 1100 ohms should be connected between this pin and ground.

Vref A3 | anadlog |Voltage reference for the video DAC. Thisisthe output of VS252'sinternal voltage

reference (1.23V). The output is relatively high impedance (10kohms); it is possible to
override it with an external voltage reference. It is recommended that a
bypass capacitor is attached to this pin.

15.2.4 Miscellaneous Signals

Miscellaneous Signals

Signal name Pin_| Mode [Description

use romy A13 (@) Use ROM (active low)> V S252 can use a ROM which is connected to the digital
RGB lines for boot configuration and as a BIOS ROM. The use_rom# lineis used
to differentiate between the normal digital video usage and the ROM access usage.
It should be connected to the ROM chip select and output enable lines; both signals
should be active and the ROM used must set the data pins to high impedance state
when it is not selected.

AGP/ PCI A6 [ Pad operation mode selection. "0" = AGP and "1" = PCI. See Supply Signals VDD_Clamp.

usr_io[Q] B13 /10

usr_io[1] C13 I/0  |User configurable general purpose 1/O pins.

usr_io[2] Al2 I/0 |These pins can be read and written, and their direction changed using internal

usr_io[3] B12 1/0 |registers.

usr_io[4] C12 1/10

usr_io[5] B9 1/0

usr_io[6] C10 1/0

rev. 1.03 08.03.00




235

15.2.5 A-Memory Signals

A-memory Signals

Signal name Pin | Mode |Description

AA[0Q] L23 O |A Memory Address. It is a 12-bit address bus.

AA[01] L22 O  |When used with SDRAM or SGRAM the memory address busis also used to transfer

AA[02] L21 O |configuration data and to perform bank select operations, so it is essential that the

AA[03] M23 O |relevant address pins are connected to the corresponding address pins on the

AA[04] M22 O  |memories (it isnot ok to swap the address pins).

AA[05] M21| O

AA[06] N23 0

AA[07] N22 (0]

AA[08] P23 (0]

AA[09] P22 0

AA[10] P21 0

AA[11] R23 0

ACASH K21 O |A Memory Column Address Select. Drives the CAS input of external memory.
Used on SDRAM/SGRAM memory configuration. On EDO or FPM DRAMS,
the DRAM’s CAS lines should be connected to ADQM# lines.

ACSH[Q] B23 O  |Chip select signals for memory banks. These lines are needed on large memory

ACSH[1] B22 O [configurations. The chip selects are decoded so that the first memory device should

ACSH 2] AB23 O |beconnected to the ACSH[ 0], the second to the ACSH{1] etc.

ACSH[3] AC23 (@)

ADQ[00] AA21| 1/O |32-bit A-memory DataBus.

ADQ[0]] AA22| 1/O |Thenorma configuration for the A-Data Busis 32 bits wide (+ 32 bits for the B-Data

ADQ[02] AA23| /O |Bus), butitispossibleto create a system with 16 (+ 16) wide interface when using

ADQ[03] Y22 /0 |SDRAM asthe basic element of the memory subsystem.

ADQ[04] Y23 1/0

ADQI05] w21 | 1/0

ADQ[06] w22 110

ADQ[07] w23 110

ADQ[08] va2i | 10

ADQ[09] v22 | 10

ADQI[10] v23 | 1/0

ADQ[11] u21 | 1/0

ADQ[12] u22 1/0

ADQ[13] u23 1/0

ADQ[14] T21 | 1/O

ADQ[15] 122 | 1/O

ADQ[16] H23 | 1/0

ADQ[17] G21 | 1/0

ADQ[18] G22 110

ADQ[19] G23 110

ADQ[20] F21 | 1/0

ADQ[21] F22 | 1/0

ADQ[22] F23 | 1/0

ADQ[23] E21 110

ADQ[24] E22 110

ADQ[25] E23 110

ADQ[26] D20 | 1/O

ADQ[27] D21 | 1/0

ADQ[28] D22 | 1/0

rev. 1.03 08.03.00



236

A-memory Signals

Signal name Pin | Mode |[Description

ADQ[29] D23 /10

ADQ[30] Cc22 1/0

ADQ[31] C23 1/0

ADQM#[Q] K23 O |A-Memory Data Byte Enables. These are connected to the DQM lines of the SDRAM

ADQM#{1] K22 O |or SGRAM, and to the CASlinesof EDO or FPM DRAMSs.

ADQM#[2] R22 o]

ADQM#{3] T23 )

Amemclk H22 O |A Memory Clock. It isthe clock output for memory synchronization used by
synchronous memories. For non-synchronous memory, this signal is not used.

Amemclkin H21 | | A Memory Clock Input. Used for controlling the latch in of the external data.
This pin must be connected to the Amemclk pin. The connection must be made even
in configurations with non-synchronous memories.

ARASH 322 | O |A-Memory Row Address Select. Drives the RAS input of external (either synchronous
or non-synchronous) memory.

AWE# 23 | O |writeEnable. Drivesthe WE# input of external (synchronous or non-synchronous)

memory.

15.2.6 B-Memory Signals

B-memory Signals

Signal name Pin | Mode |Description
BA[Q0Q] N1 O |B-Memory Address. It isa12-bit address bus.
BA[01] N2 O  |When used with SDRAM or SGRAM the memory address busis also used to transfer
BA[02] N3 O  |configuration data and to perform bank select operations, so it is essential that the
BA[03] M1 O |relevant address pins are connected to the corresponding address pins on the
BA[04] M2 O  |memories (it is not ok to swap the address pins).
BA[05] M3 o]
BA[06] L1 o]
BA[07] L2 o]
BA[08] K1 )
BA[09] K2 )
BA[10] K3 )
BA[11] J o]
BCASH P3 O |B-Memory Column Address Select. Drives the CAS input of external memory.
Used on SDRAM/SGRAM memory configuration. On EDO or FPM DRAMSs,
the DRAM'’s CAS lines should be connected to ADQM# lines.
BCSH{ 0] AB1 O  |Chip select signals for memory banks. These lines are needed on large memory
BCSH 1] AB2 O |configurations. The chip selects are decoded so that the first memory device should
BCSH[ 2] Bl O  |beconnected to the BCSH[ 0], the second to the BCSH[ 1] etc.
BCSH3] Al o]
BDQ[0Q] C3 1/0 |32-bit B-Memory DataBus.
BDQ[01] C2 I/0 | Thenormal configuration for the B-Data Busis 32 bitswide (+ 32 bits for the A-Data
BDQ[02] C1 I/O |Bus), but it is possible to create a system with 16 (+ 16) wide interface when using
BDQ[03] D2 I/0 |SDRAM asthe basic element of the memory subsystem.
BDQ[04] D1 /10
BDQ[05] E3 1/10
BDQ[06] E2 /10
BDQ[07] El 1/0
BDQ[08] F3 110
rev. 1.03 08.03.00




237

B-memory Signals

Signal name Pin | Mode |Description

BDQ[09] F2 1/10

BDQ[10] F1 1/0

BDQ[11]] G3 1/0

BDQ[12] G2 110

BDQ[13] Gl 1/0

BDQ[14] H3 1/0

BDQ[15] H2 1/0

BDQ[16] Tl 1/0

BDQ[17] U3 1/0

BDQ[18] u2 1/0

BDQ[19] U1 1/10

BDQ[20] V3 110

BDQ[21] V2 1/0

BDQ[2?2] V1 1/0

BDQ[23] W3 1/0

BDQ[24] w2 | 1/0

BDQ[25] w1l | 1/0

BDQ[26] Y4 1/0

BDQ[27] Y3 1/0

BDQ[28] Y2 1/0

BDQ[29] Y1 1/0

BDQ[30] AA2 110

BDQ[31] AAl| 1/0

BDQM#[0] P1 O |B-Memory Data Byte Enables. These are connected to the DQM lines of the SDRAM

BDQM#{1] P2 O |or SGRAM, and to the CAS lines of EDO or FPM DRAMSs.

BDQM#[2] 2 0

BDQM#[3] H1 0

Bmemclk T2 O |B-Memory Clock. It isthe clock output for memory synchronization used by
synchronous memories. For non-synchronous memory, this signal is not used.

Bmemclkin | T3 | 1| B-Memory Clock Input. Used for controlling the latching-in of the external data.
This pin must be connected to the Bmemclk pin. The connection must be made even
in configurations with non-synchronous memories.

BRASH | R2 | 0O |B-Memory Row Address Select. Drivesthe RAS input of external (either synchronous
or non-synchronous) memory.

BWE# | R1L | O |B-Memory Write Enable. Drives the WE# input of external (synchronous or
non-synchronous) memory.

rev. 1.03 08.03.00



238

15.2.7 PCI-Bus Signals

PCI Bus Signals

Signal name Pin | Mode |Description

PCI_AD[00] AB22| 1/0 [32-bit multiplexed Address and Data Bus.
PCI_AD[01] AC22| 1/O

PCI_AD[02] AB21| 1/O

PCI_AD[03] AC21| 1/O

PCl_AD[04] AC20| 1/O

PCl_AD[05] AB20| 1/O

PCI_AD[06] AA19| 1/O

PCI_AD[07] AB19| 1/O

PCI_AD[08] AC19| 1/O

PCI_AD[09] AB18| 1/O0

PCl_AD[10] AC18| 1/O

PCI_AD[11] AAl17| 1/O

PCI_AD[12] AB17| 1/O

PCI_AD[13] AC17| 1/O

PCI_AD[14] AB16| 1/O

PCI_AD[15] AA15| 1/O

PCl_AD[16] AC11| 1/O

PCI_AD[17] AA10| I/O

PCI_AD[18] AB10| 1/O

PCI_AD[19] AC10| /O

PCI_AD[20] AB9 1/10

PCI_AD[21] AA9 110

PCI_AD[22] AC9 1/0

PCl_AD[23] AB8 1/0

PCI_AD[24] AC7 1/10

PCI_AD[25] AB6 1/10

PCI_AD[26] AC6 1/10

PCI_AD[27] AB5 1/0

PCl_AD[28] AC5 /10

PCl_AD[29] AA4 1/0

PCI_AD[30] AB4 1/10

PCI_AD[31] AC4 1/10

PCI_C/BEH[Q] AA18| /O [Multiplexed Bus Command and Byte Enables.
PCI_C/BE#[1] AC16| 1/0O |Used to transmit the command on the first cycle of the transaction and the byte
PCl_C/BE#[2] AB11| 1/O |enableson thefollowing cycles.
PCl_C/BE#[3] AB7 1/0

PCI_CLK AA3 | PCI Clock Signal. Supports PCI clock frequenciesin the range 0-33 MHz.
rev. 1.03 08.03.00




239

PCI Bus Signals

Signal name Pin | Mode |Description
PCI DEVSEL# AB13| /0O [Device Select. Used by transaction target to indicate that it has decoded

arecognized address of the transaction.

PClI_FRAME# AC12| 1/O |Cycle Frame.Driven by the transaction initiator to indicate the beginning
and the duration of an access.
PCl GNT# AB3 I Grant Bus Ownership. Indicates to the agent that the arbiter has granted access
to the bus when V S252 operates as a bus master.
PCl_IDSEL AC8 [ Initialization Device select. Used as a chip select during the configuration transactions.
Note that configuration transactions do not use the normal PCI address decoding.
PCI_INTA# ACl1 O [Interrupt A. Indicates an interrupt request. The wiring of this interrupt lineis

motherboard and operating system dependent. The interrupt is reset by
resetting the corresponding status register hit.

PCl IRDY# AB12| 1/O |lInitiator Ready. Indicates the initiating agent’s ability to complete the data phase of the

transaction, and is ready to transfer data on the current clock cycle. Pin direction
depends on whether VS252 is participating in the transfer as atarget or as

an initiator.

PClI_ PAR AB15| 1/O |Parity. Indicates even parity across PCI_AD[31:0] and PCI_C/BE#{3:0].

PCl PERR# AB14| 1/O |Parity Error. Indicates adata parity error in AD, C/BE#, and PAR signal lines during
the data phase.

PCl_REQ# AC3 O |Request bus ownership. Used when operating as the initiator for requesting bus
ownership; indicates to the arbiter that this agent desires use of the bus.

PCI_RST# AC2 I PCI Reset. Forces the PCI sequencer of V S252 to a known state.

PCl_SERR# AC15| /O |System Error. Reports address or data parity errors or any other catastrophic error.

PCI_STOP# ACl14| 1/O |StopTransaction; used by the target when it needs to stop a transaction.
Typical usage does not indicate any kind of error condition.

PCl_TRDY# AC13| 1/O |Target Ready. Indicates the target agent’s ability to complete the current data phase,

and is ready to transfer data on the current clock cycle. Pin direction
depends on whether VVS252 is participating in the transfer asa
target or asan initiator.

rev. 1.03 08.03.00



240

15.2.8 Supply Signals

Supply Signals
Signal name Pin |Mode |Description
gnd_core J21  |power [Core ground pads.
gnd core R21 |power
gnd core AA20 |power
gnd_core Y13 |power
gnd_core AA12 |power
gnd_core Y8 power
gnd core R3 power
gnd core J3 power
gnd core Cl11 |power
gnd_core C18 |power
GND_diga E20 |power |Ground for A memory pads.
GND_diga G20 |power
GND_diga J20  |power
GND diga M20 |power
GND diga P20 |power
GND_diga V20 |power
GND_diga Y21 |power
GND_digp Y19 |power |Ground for PCI pads.
GND_digp Y16 |power
GND_digp Y15 |power
GND_digp AA13 |power
GND_digp Y10 |power
GND_digp AAG |power
GND_digp Y6 power
GND_digp AA5 |power
GND_digb W4  |power |Ground for B memory pads.
GND_digb U4 power
GND_digb R4 power
GND_digb M4 [power
GND_digb K4 power
GND_digb F4 power
GND_digb D3 power
GND_ dac A2 power |Ground for internal DAC.
GND_bias B4 power
VDD _dac 4 power |Analog Vdd.
GND_DIG D5 power |Ground for core.
GND DIG D9 power
GND DIG D14 |power
GND DIG D16 |power
GND _DIG D18 |power
D7 Not used.
vdd_cor€g[0] K20 |[power [CoreVyq,
vdd coreg[1] R20 |power
vdd cor€g[2] Y18 |power
vdd cor€g[3] AA14 |power
vdd_core[4] Y12 |power
vdd_coreg[5] AA8 [power
vdd_cor€[ 6] P4 power

rev. 1.03

08.03.00




241

Supply Signals

Signal name Pin |Mode |Description

vdd corg]7] N power [CoreVyy
vdd_core[ 8] Cc9 power

vdd_core[9] C19 |power

VDD _syn A5 power |V for PLL.
GND_syn B6 power |Groung for PLL.
VDD Clamp AA11l |power |Clamp diodeterminal. Note 3.3 volt for AGP and 5 or 3.3 volt for PCI. See aso pin A6
VDD_Clamp D4 power |AGP/PCI in Miscellaneous Signals.
VDD_PADa F20 |power |V for A memory pads.
VDD _PADa H20 |power

VDD PADa L20 |power

VDD PADa N21 |power

VDD PADa N20 |power

VDD_PADa T20 [power

VDD_PADa U20 [power

VDD _PADa W20 [power

VDD PADb V4 power |V for B memory pads.
VDD_PADb T4 power

VDD_PADb N4 power

VDD_PADb L3 power

VDD_PADb L4 power

VDD_PADb H4 power

VDD PADb G4 power

VDD_PADb E4 power

VDD PADp Y20 |power |V for PCI pads.
VDD_PADp Y17 |power

VDD_PADp AA16 |power

VDD_PADp Y14 |power

VDD_PADp Y11 |power

VDD PADp Y9 power

VDD_PADp AA7 |power

VDD_PADp Y7 power

VDD_PADp Y5 power

VDD_PADv D10 |power |V for video pads.
VDD_PADv D11 |power

VDD_PADv D12  |power

VDD_PADv D13  |power

VDD_PADv D15 |power

VDD_PADv D17  [power

VDD_PADv D19 |power

rev. 1.03

08.03.00



242

16. Electrical Specifications

16.1 Electrical Characteristics and Operating Conditions

16.1.1 Absolute Maximum Conditions

Beyond these limits damage may occur to the device.

Symbol  |Parameter Condition Min Typ Max Unit
\4 Supply voltage -0.25 4.0 \
Tg Storage temperature -40 125 °C
16.1.2 DC Operating Conditions

Valid for 25 °C ambient temperature and 3.3 V supply unless otherwise stated.
Symbol  |Parameter Condition Min Typ Max Unit
Vi Supply voltage 3.0 3.3 3.6 \%
Vip Supply voltage 3.0 3.3 3.6 \%
Avd Analog Supply Voltage 3.15 3.3 3.45 \4
CLK Crystal Frequency 14.318 MHz
16.1.3 General Specifications
Symbol  |Parameter Condition Min Typ Max Unit
Vi TTL input LO Vaa=33V -0.5 0.3* Vya Vv
Vin TTL input HI Vaa=33V 0.5* Vya Via+ 0.5 Vv
I; Input leakage 0<V;,,<Vy -10 10 uA
Va Low Level Output pad: I,=1500 uA, Vg@4=3.3V 0.1* Vgq A%
Ven High Level Output pad: I;,=-500 uA, Vgq=33V 0.9* Vya Vv
I, High Z leakage 0<V,<Vyu -10 10 uA

rev. 1.03 08.03.00




16.1.4 Electrical Specifications

243

Symbol  |Parameter Condition Min Typ Max Unit
Digital Supply Current '

Ivop (using CMOS -level clock)[Power up RESET = Logic 0 150 TBA mA

Lap Analog Supply Current |pgyver up RESET = Logic 0 40 TBA mA

SN, Digital Supply Current |pgwer down RESET = Logic1 1 UA

Lavprp Analog Supply Current |pgwer down RESET = Logic1 1 UA

16.2 Timing Parameters
16.2.1 PCI Interface

The PCI interface is designed to be compatible with PCI Local Bus Specification rev. 2.1.

-

CLK —\—

Signal in J—E

Signal out
Symbol  |Parameter Min Max Unit
tsu Input set up time to CLK
bused signals 7 ns
point to point 10 ns
th Input hold time from CLK 0 ns
tval CLK to output valid delay
bused signals 2 11 ns
point to point 2 12 ns

rev. 1.03

08.03.00



244

16.2.2 Video Capture

Video capture unit is designed to be working at least up to 35 MHz capture clock
frequencies.

Capture_clk—\— \

tsu th
i TN T\

Symbol |Parameter Min | Max | Unit
tsu Input set up time to CLK 0 8 ns
th Input hold time from CLK 0 4 ns

16.2.3 Memory Interface

All timings are relative to the MEMCLK created by VS25203. Memory interface is
designated to be compatible with SGRAM and SDRAM devices with clock frequencies

up to 100MHz.
MEMCLK \
tsu th
Signal in / \
tval
Signal out t
Symbol |Parameter Min | Max | Unit
tsu Input set up time to CLK 1 ns
th Input hold time from CLK 1 ns
tval CLK fall to output valid delay 0 1 ns
08.03.00

rev. 1.03



245

16.2.4 Video Interface

All timings are relative to the MEMCLK created by V S25203.

VCLK
td
PCLK
tval

Signal out 1(
Symbol |Parameter Min | Max | Unit
td PCLK delay from VCLK 0 3] ns
tval CLK fall to output valid delay 0 1] ns

rev. 1.03 08.03.00



246

17. Further Readings

PCI Local Bus Specification, rev. 2.1.
PCI Multimedia Design Guide rev. 1.0.
PCI System Design Guide, rev. 1.0.

PCI Special Interest Group, PO Box 14070, Portland, OR 97214,
tel.no. 1 800 433 5177 (503 2346762 int.) 1503 234 6762 fax.

rev. 1.03 08.03.00



18. Index

A-bus, 126
apt_addr, 17
atex_confl, 142
atex_conf2
amode, 144
ad, 143
am, 130, 143
aphig, 144
apwid, 144
asubs, 143
axl, 130, 143
ayl, 130, 143

ATTRI10 - Attribute Controller Mode, 201
ATTR11 - Overscan Color Register, 202
ATTR12 - Color Plane Enable Register, 203
ATTR13 - Horizontd Pixel Panning, 203
ATTR14 - Color Select Register, 204
ATTRIDX - Attributer Index, 200
ATTRPAL - Pdette Registers, 200

atu_dx, 110
atu_dy, 110
atu_init, 110
atv_dx, 111
atv_dy, 111
atv_init, 111
back porch, 209
base_addr
cbaseb, 145
zbaseb, 145
B-bus, 126
bilin, 140

bilinear interpolation, 127

BIOS, 12, 16, 18
blend unit, 126
Blt_bg_color, 223
Blt_fg_color, 223
Blt_params, 224
Blt_size, 225
Blt_src_addr, 224
blt_src_strd, 222
Blt_tgt_addr, 225
bit_tgt_strd, 223
boot, 18
btex_conf2, 145

bm, 130

bxl, 130

byl, 130
btu_dx, 112
btu_dy, 112
btu_init, 112
btv_dx, 113
btv_dy, 113
btv_init, 113
bump-mapping, 147
capt_base_conf, 220
capt_w_h, 221
cb_dx, 108
cb_dy, 108

247

cb_init, 108
C-bus, 126
cfgo

cache_|s, 26

hdr_type, 26

lat_tim, 26
cfgl

int_line, 28

int_pin, 28

max_lat, 28

min_gnt, 28
cg_dx, 107
cg_dy, 107
cg_init, 107
class rev

class _code, 26

revision_id, 26
clock frequency parameters, 153
clock synthesizer, 230
coef_regl, 141
coef_reg2, 142
coef_reg3, 142
color_op, 131
core_clk_cfg

m_coef, 29

n_coef, 29

no, 28

r_coef, 29
CPDATA - Color Palette Data, 206
CPMASK - Color Pdette Mask, 207
CPRADDR - Color Palette Read Address, 205
CPSTATE - Color Palette State, 207
CPWADDR - Color Palette Write Address, 205
cr_dx, 106
cr_dy, 106
cr_init, 16, 106
cread, 134
CRTCOO - Horizontal Total, 170
CRTCOL - Horizontal Display End, 171
CRTCO2 - Horizontal Blanking Start, 171
CRTCO3 - Horizontal Blanking End, 172
CRTCO04 - Horizontal Sync Start, 173
CRTCO5 - Horizontal Sync End, 173
CRTCO06 - Vertical Total, 174
CRTCO7 - CRTC Overflow Register, 175
CRTCO8 - Preset Row Scan, 176
CRTCO9 - Character Cdll Height, 177
CRTCOA - Cursor Start, 178
CRTCOB - Cursor End, 179
CRTCOC - Start Address High, 179
CRTCOD - Start Address Low, 180
CRTCOE - Cursor Location High, 180
CRTC10 - Vertical Sync Start, 181
CRTC11 - Vertical Sync End, 182
CRTC12 - Vertical Display End, 183
CRTC13 - Offset Register, 183
CRTC14 - Underline Register, 184
CRTC15 - Vertical Blank Start, 185

rev. 1.03

08.03.00



248

CRTC16 - Vertical Blank End, 185 zeq, 148

CRTC17 - Mode Control Register, 186 zm, 149

CRTC18 - CRTC Line Compare, 187 Geometry Processor

CRTCA40 - CRTC Extension Register 1, 188 Arithmetic instructions (AUs), 65

CRTCA41 - CRTC Extension Register 2, 189 A-loads, 67

CRTC42 - CRTC Extension Register 3, 190 AU_OP, AU_OP2, AU_OP01, 66

CRTC43 - CRTC Extension Register 4, 191 AU12, 69

CRTC44 - Read Bank Start Address, 191 AUSG, 70

CRTC45 - Write Bank Start Address, 192 M-load, 68

CRTCINDEX - CRTC Register Index, 170 R-loads, 69

CRTCOF - Cursor Location Low, 181 Arithmetic Unit input registers

ct_dx, 109 A0, A1, A2, 60

ct_dy, 109 MO, M1, M2, 60

ct_init, 109 RO, R1, R2, 60

ctrl_reg_bar, 16, 27 X0, X1, X2, 59

DAC, 226 Y0,Y1,Y2 59

debug_reg, 41 Branch instructions

depth value, 115 BRANCH, 88

direct, 20 Program address space, 87

dither, 126, 146, 147 Using the Precache instruction, 87

edge ordering, 116 Branch instructions, 54, 86

edge order, 116 CODEBASE register, 54, 57, 87, 97, 99

edgeO interpolator, 117 Control registers

edge0_dx, 117 JMPREG, 62

edge0_dy, 117 N, 62

edge0_init, 116, 117 PC, 62

edgel interpolator, 118 REGBASE, 62

edgel dx, 118 VTMB, 57, 62

edgel dy, 118 Derive VTMB instruction, 92

edgel_init, 118 Direct stream data, 101

edge? interpolator, 119 Division instruction, 93

edge2_dx, 119 General Move instructions, 82

edge2_dy, 119 IMMED, 84

edge2_init, 119 MOVE_REG, 82

EPROM, 227 SIMMED, 85

exp_rom_bar Index registers
rom_bar, 27 WRBASEDQ, -1 and -2, 61

ext_io_reg XRDBASEDQ, -1 and -2, 61
eie 42 YRDBASEQ, -1 and -2, 61
extra_in_data, 42 Logic instructions
extra_out_data, 42 LOGIC, 80
tm, 42 Miscellaneous instructions
usr_io_ena, 42 OUT, 89

ext_io_reg2 WR_STRM and SWR_STRM, 90
edbe, 42 Miscellaneous instructions, 89
extra_out_data b, 42 RD_STRM, 90
usr_io_e2,42 Normalize instruction, 92

Externa VideoDAC, 12 Parellel Move instructions

extral/O pins, 41 LOAD, 72

fast clear, 148 LOAD_SAVE, 79

feat_reg, 217 SAVE, 76

feat_reg -register, 34 SLOAD, 74

ffe, 217 RETURN instruction, 92

ffm, 217 Specia AU ingtructions, 93

fft, 217 Specid instruction (SPEC), 92

FIFO, 126 STATUS register, 63

frame_mode stream |/O, 100
cm, 149 Stream registers
fce, 148 stream data high, - low, 61
fev, 148 Stream Read address, 61, 100
osat, 148 Stream Write address, 61, 100
rtr, 148 Wait, 56

rev. 1.03 08.03.00



Geometry Processor, PCl Registers
192 synchronization register, 96
193 code_config register, 97
194 Status reg_in register

blti, 98

gpO0, 98

gpf, 98

gpi, 98

id1, 98

id2, 98

ok1, 98

ok2, 98

pv, 98

vc, 98

video_y_coord, 98
196 Data in register, 98
197 Data_out register, 99

GFXO0 - Set/ Reset Register, 193

GFX1 - Enable Set / Reset Register, 194

GFX2 - Color Compare, 194

GFX3 - Data Rotate, 195

GFX4 - Read Map, 196

GFX5 - Mode Register, 196

GFX6 - Miscellaneous Register, 197

GFX7 - Color Don't Care, 198

GFX8 - Write Mask, 199

GFXINDEX - Graphic Register Index, 193

gr_ram_bar, 17, 26, 38

grid mask, 121

orid_reg
B texture quad loop, 121
rendering screen height/32, 121

grid_reg
A texture quad loop, 121
A_not_ Umsh, 121
A_not_Vmsh, 121
B_not_Umsb, 121
B_not_Vmsb, 121
constant_perspective, 121
grid mask, 121
Rendering screen height/32, 121

halt, 23

id_reg
device id, 25
vendor_id, 25

Internal VideoDAC, 12

interrupts, 35

io_reg, 41

IRQs, 35, 160

jump, 21

linear mode, 17

Logic unit, 127

logic_op, 133

ma_cmd_addr, 37

ma_ext_addr -register, 38

ma_int_addr -register, 38

master_state
master_cnt, 37
master_st, 37

mem_apt0_cfg
apt0_addr, 43
apt0_height, 43

apt0_width, 43

bs0, 43

mo, 43

rl0, 43

ws0, 43
mem_aptl cfg, 44
mem_cfg -register, 29
memory

EDO DRAM, 44

SDRAM, 44

SGRAM, 44
MIP-mapping, 126, 129
modulation, 147
overflow, 148
p interpolator, 122
p_dx, 122
p_dy, 122
p_init, 122
palette, 140
palette_base, 149
PCI, 154
PCI BIOS, 12, 16, 18
PCI bus, 18
PCI stream command

direct, 20

halt, 23

jump, 21

read, 22, 38

wait, 23
PCI stream handling, 19
perspective correction, 122
ppu_code_start

start_addr, 149
ppu_mode

nd, 147

s, 148

shr, 147

sok, 147

st_oper, 148

tsk, 148
raster transparency, 148
raster_ext

rst, 124
raw mode, 17
read, 22, 38
ref_reg, 39

vgaq, 40

video_y ref, 39, 40

vq, 40
reg_acc_addr -register, 33
reg_acc_data-register, 33
register map, 13
screen_w_h

screen_h, 212

screen_w, 212
SEQO - Sequencer Reset, 165
SEQL1 - Clocking Mode, 166
SEQ2 - Plane Mask, 167
SEQ3 - Character Map Select, 168
SEQ4 - Memory Mode, 169
SEQINDEX - Sequencer Index Register, 165
shading program, 126, 129

249

rev. 1.03

08.03.00



250

status -register

blti, 40

capi, 39

gp0, 40

opf, 40

gpi, 39

id1, 40

id2, 40

mi, 39

ok1, 40

ok2, 40

pv, 39

vc, 40

vi, 39

video_y_coord, 39
status cmd

command, 25

status, 25
stencil, 148
stipple_blend, 132
sub_id

sub_id, 27

sub_ven id, 27
textfetch, 137
textfetch_modulate, 138, 147
Texture fetch unit, 126, 127
Timing Parameters, 243
tlogic, 140
TMP1-3, 126
transparency skip, 147
trilinear interpolation, 127
wait, 23
VGA

general registers

FEATCTRL - Feature Controller, 162
INPUTSO - Input Status 0, 163

dpp, 216

hbm, 216

hbp, 216

hsp, 216

pw, 216

vbp, 216

vsp, 216

vwm, 216
video_clk_cfg

m_coef, 33

n_coef, 33

r_coef, 33
video_hblank

hblank_end, 213

hblank_start, 214

hbp, 216
video_hsync

hsp, 216

hsync_end, 214

hsync_start, 215
video w_h

video_h, 212

video w, 212
video_vblank

vblank_end, 213

vblank_start, 213

vbp, 216
video_vsync

vsp, 216

vsync_end, 214

vsync_start, 214
video_y_ref, 40
y_end, 116, 123
y_init, 116, 123
z equal compare, 148
z interpolator, 115

INPUTSL - Input Status 1, 164 z_dx, 115
MISCOUT - Miscellaneous Output Register, 160 z_dy, 115
video_base_conf Z init, 115
mh, 215 z shr, 114
scr_addr, 215 zread, 135
video_bit_config zwrite, 136
dpl, 216
rev. 1.03 08.03.00



